Cost-Effective Nanosensor Solutions for Ultra-Sensitive Detection of Metronidazole

IF 3 Q2 CHEMISTRY, ANALYTICAL Analytical science advances Pub Date : 2025-02-17 DOI:10.1002/ansa.70000
Ahmad Mobed, Mohammad Darvishi, Vahid Alivirdiloo, Sara Ebrahimi, Mobasher Hajiabbasi, Farhood Ghazi, Hamidreza Hassanzadeh Khanmiri
{"title":"Cost-Effective Nanosensor Solutions for Ultra-Sensitive Detection of Metronidazole","authors":"Ahmad Mobed,&nbsp;Mohammad Darvishi,&nbsp;Vahid Alivirdiloo,&nbsp;Sara Ebrahimi,&nbsp;Mobasher Hajiabbasi,&nbsp;Farhood Ghazi,&nbsp;Hamidreza Hassanzadeh Khanmiri","doi":"10.1002/ansa.70000","DOIUrl":null,"url":null,"abstract":"<p>Metronidazole (MNZ) is a widely used imidazole antibiotic effective against bacterial and protozoal infections, including giardiasis, trichomoniasis, bacterial vaginosis, and antibiotic-associated colitis. However, prolonged and excessive use of MNZ can lead to serious side effects, such as peripheral neuropathies, toxicity, and optic neuropathy. Therefore, the accurate detection and removal of MNZ present significant technical challenges. This manuscript introduces novel approaches for the development and integration of precise and cost-effective sensors specifically designed for the accurate measurement of MNZ levels. We explore cutting-edge nanotechnology strategies for detecting MNZ, with a particular focus on innovative nanobiosensors, including photodynamic-based biosensors, acousto dynamic sensors, and electrochemical biosensors. Additionally, we delve into the unique challenges and opportunities associated with multiphysics biometric biosensors and related nanotechnologies in the detection of MNZ. This review not only provides insights and scientific evidence regarding the application of nanobiosensors for the accurate measurement of MNZ but also highlights recent advancements in sensor technology that represent a significant leap forward in this field. By emphasizing these novel contributions, we aim to pave the way for future research and development in this critical area. Ultimately, our findings underscore the importance of reliable detection methods in mitigating the risks associated with MNZ use and improving patient safety.</p>","PeriodicalId":93411,"journal":{"name":"Analytical science advances","volume":"6 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ansa.70000","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical science advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ansa.70000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Metronidazole (MNZ) is a widely used imidazole antibiotic effective against bacterial and protozoal infections, including giardiasis, trichomoniasis, bacterial vaginosis, and antibiotic-associated colitis. However, prolonged and excessive use of MNZ can lead to serious side effects, such as peripheral neuropathies, toxicity, and optic neuropathy. Therefore, the accurate detection and removal of MNZ present significant technical challenges. This manuscript introduces novel approaches for the development and integration of precise and cost-effective sensors specifically designed for the accurate measurement of MNZ levels. We explore cutting-edge nanotechnology strategies for detecting MNZ, with a particular focus on innovative nanobiosensors, including photodynamic-based biosensors, acousto dynamic sensors, and electrochemical biosensors. Additionally, we delve into the unique challenges and opportunities associated with multiphysics biometric biosensors and related nanotechnologies in the detection of MNZ. This review not only provides insights and scientific evidence regarding the application of nanobiosensors for the accurate measurement of MNZ but also highlights recent advancements in sensor technology that represent a significant leap forward in this field. By emphasizing these novel contributions, we aim to pave the way for future research and development in this critical area. Ultimately, our findings underscore the importance of reliable detection methods in mitigating the risks associated with MNZ use and improving patient safety.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
0
期刊最新文献
Cost-Effective Nanosensor Solutions for Ultra-Sensitive Detection of Metronidazole Analytics for Grannies 003: Chromatography Development and Validation of a Gas Chromatography-Mass Spectrometry Method for the Determination of Fentanyl and Butyryl Fentanyl in Oral Fluid Incremental Modification in the Existing Approaches for Affinity Chromatographic Enrichment of Phosphoproteins Improves Their Profile in Liquid Chromatography-Tandem Mass Spectrometry Analysis Combining Thermogravimetry-Mass Spectrometry and Target Factor Analysis for Rapid Characterization of Volatiles from Degradation of Epoxy Paint
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1