Álvarez-Noriega Mariana, Aston Eoghan, Becker Madison, Fabricius Katharina E, Figueira Will F, Gordon Sophie, Krensel Ryan, Lechene Marine AA, Remmers Tiny, Toor Maren, Ferrari Renata
{"title":"Challenging Paradigms Around the Role of Colony Size, Taxa, and Environment on Bleaching Susceptibility","authors":"Álvarez-Noriega Mariana, Aston Eoghan, Becker Madison, Fabricius Katharina E, Figueira Will F, Gordon Sophie, Krensel Ryan, Lechene Marine AA, Remmers Tiny, Toor Maren, Ferrari Renata","doi":"10.1111/gcb.70090","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Understanding how bleaching severity varies across space and among and within taxa helps predict changes in community composition due to climate change and informs conservation efforts. Photogrammetry offers a non-invasive and time effective method for quantifying attributes of thousands of coral colonies across large, environmentally diverse reef areas. This approach circumvents the limitations of traditional survey methods, where detailed tracking of individual colonies comes at the expense of large sampling areas and sample sizes. Using photogrammetry, we measured colony size and scored bleaching severity of > 5000 colonies of 13 taxa across 26 sites (> 7400 m<sup>2</sup> of reef) during a mild bleaching event in the central Great Barrier Reef (GBR) in 2022. We quantified the relationship between bleaching severity and key biological and environmental factors: colony size, taxonomic identity, degree-heating weeks (DHWs), water velocity, various measures of reef structural complexity, depth, and distance to coast. Our results show that bleaching probability decreased with increasing colony size for most taxa, contradicting the current understanding of size-dependent bleaching. Counter to conventional thinking, tabular <i>Acropora</i> spp. presented very low levels of bleaching in 2022 despite being among the most severely bleached taxa during the bleaching event in 1998, suggesting possible adaptation in the last two decades. Our results show a high level of idiosyncrasy in environmental gradients of bleaching severity. For instance, the effect of depth on was taxon-dependent and the effect of wave velocity differed between inshore and offshore reefs. Our results challenge prevailing paradigms around the role of colony size and environment in regulating bleaching susceptibility, suggesting that refugia are not universal but instead depend on specific environment-taxonomic combinations and taxon-specific colony sizes.</p>\n </div>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"31 2","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70090","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding how bleaching severity varies across space and among and within taxa helps predict changes in community composition due to climate change and informs conservation efforts. Photogrammetry offers a non-invasive and time effective method for quantifying attributes of thousands of coral colonies across large, environmentally diverse reef areas. This approach circumvents the limitations of traditional survey methods, where detailed tracking of individual colonies comes at the expense of large sampling areas and sample sizes. Using photogrammetry, we measured colony size and scored bleaching severity of > 5000 colonies of 13 taxa across 26 sites (> 7400 m2 of reef) during a mild bleaching event in the central Great Barrier Reef (GBR) in 2022. We quantified the relationship between bleaching severity and key biological and environmental factors: colony size, taxonomic identity, degree-heating weeks (DHWs), water velocity, various measures of reef structural complexity, depth, and distance to coast. Our results show that bleaching probability decreased with increasing colony size for most taxa, contradicting the current understanding of size-dependent bleaching. Counter to conventional thinking, tabular Acropora spp. presented very low levels of bleaching in 2022 despite being among the most severely bleached taxa during the bleaching event in 1998, suggesting possible adaptation in the last two decades. Our results show a high level of idiosyncrasy in environmental gradients of bleaching severity. For instance, the effect of depth on was taxon-dependent and the effect of wave velocity differed between inshore and offshore reefs. Our results challenge prevailing paradigms around the role of colony size and environment in regulating bleaching susceptibility, suggesting that refugia are not universal but instead depend on specific environment-taxonomic combinations and taxon-specific colony sizes.
期刊介绍:
Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health.
Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.