NUP98-p65 complex regulates DNA repair to maintain glioblastoma stem cells

IF 4.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY The FASEB Journal Pub Date : 2025-02-17 DOI:10.1096/fj.202403256R
Feifei Li, Ying Zhang, Jiahui Li, Ranran Jiang, Shusheng Ci
{"title":"NUP98-p65 complex regulates DNA repair to maintain glioblastoma stem cells","authors":"Feifei Li,&nbsp;Ying Zhang,&nbsp;Jiahui Li,&nbsp;Ranran Jiang,&nbsp;Shusheng Ci","doi":"10.1096/fj.202403256R","DOIUrl":null,"url":null,"abstract":"<p>The nuclear pore complex (NPC) is an evolutionarily conserved structure that maintains the traffic between the nucleus and cytoplasm. Here, we profiled the expression of nucleoporins (NUPs) in glioblastoma stem cells (GSCs) and found that NUP98 promoted GSC maintenance and therapeutic resistance. GSCs preferentially expressed NUP98, which is essential for GSC tumorigenesis in vitro and in vivo. RNA sequencing demonstrated that NUP98 regulated the expression of key DNA damage and repair pathways. NUP98 formed a complex with transcription factor p65 to directly activate genes involved in homologous repair. Attenuation of NUP98 or p65 expression induced unrepaired intrinsic DNA damage and sensitized GSC to ionizing radiation. Clinically, overexpression of NUP98 informs poor clinical outcome among glioblastoma (GBM) patients. Collectively, our results demonstrate that NUP98-p65 represents a novel node in the regulation of DNA repair, suggesting a therapeutic strategy with potential clinical benefits for GBM patients.</p>","PeriodicalId":50455,"journal":{"name":"The FASEB Journal","volume":"39 4","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FASEB Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1096/fj.202403256R","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The nuclear pore complex (NPC) is an evolutionarily conserved structure that maintains the traffic between the nucleus and cytoplasm. Here, we profiled the expression of nucleoporins (NUPs) in glioblastoma stem cells (GSCs) and found that NUP98 promoted GSC maintenance and therapeutic resistance. GSCs preferentially expressed NUP98, which is essential for GSC tumorigenesis in vitro and in vivo. RNA sequencing demonstrated that NUP98 regulated the expression of key DNA damage and repair pathways. NUP98 formed a complex with transcription factor p65 to directly activate genes involved in homologous repair. Attenuation of NUP98 or p65 expression induced unrepaired intrinsic DNA damage and sensitized GSC to ionizing radiation. Clinically, overexpression of NUP98 informs poor clinical outcome among glioblastoma (GBM) patients. Collectively, our results demonstrate that NUP98-p65 represents a novel node in the regulation of DNA repair, suggesting a therapeutic strategy with potential clinical benefits for GBM patients.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
The FASEB Journal
The FASEB Journal 生物-生化与分子生物学
CiteScore
9.20
自引率
2.10%
发文量
6243
审稿时长
3 months
期刊介绍: The FASEB Journal publishes international, transdisciplinary research covering all fields of biology at every level of organization: atomic, molecular, cell, tissue, organ, organismic and population. While the journal strives to include research that cuts across the biological sciences, it also considers submissions that lie within one field, but may have implications for other fields as well. The journal seeks to publish basic and translational research, but also welcomes reports of pre-clinical and early clinical research. In addition to research, review, and hypothesis submissions, The FASEB Journal also seeks perspectives, commentaries, book reviews, and similar content related to the life sciences in its Up Front section.
期刊最新文献
Nmnat2 deficiency in the arcuate nucleus or paraventricular nucleus induces Sarm1-independent neuron loss and liraglutide-reversible obesity Muscle-specific ERRγ activation mitigates muscle atrophy after ACL injury DHFR2 RNA directly regulates dihydrofolate reductase and its expression level impacts folate one carbon metabolism NUP98-p65 complex regulates DNA repair to maintain glioblastoma stem cells Mechanism of O-GlcNAcylation regulating liver lipid synthesis in mice through FASN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1