Effect of Atmospheric Pressure Cold Plasma Treatment on the Radical Scavenging and Antioxidant Activities, Phenolic Content, and Some Nutritional Characteristics of Chia Seeds (Salvia hispanica L.)
Narjes Jamali, Amene Nematollahi, Zahra Rahmdar, Mohammad Kiani, Mohammad Torkashvand, Neda Mollakhalili-meybodi
{"title":"Effect of Atmospheric Pressure Cold Plasma Treatment on the Radical Scavenging and Antioxidant Activities, Phenolic Content, and Some Nutritional Characteristics of Chia Seeds (Salvia hispanica L.)","authors":"Narjes Jamali, Amene Nematollahi, Zahra Rahmdar, Mohammad Kiani, Mohammad Torkashvand, Neda Mollakhalili-meybodi","doi":"10.1155/jfpp/8829261","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the potential effects of atmospheric pressure cold plasma (ACP) treatment as a novel nonthermal processing method for plant-derived products, specifically focusing on chia seeds, a rich source of nutrients. The impacts of ACP treatment (at intensities of 6.5 kV for 3 min, 6.5 kV for 8 min, 8.5 kV for 3 min, and 8.5 kV for 8 min, which are called S1, S2, S3, and S4, respectively) on radical scavenging and antioxidant activities, phenolic content, and some nutritional characteristics of chia seeds were examined and compared with the control sample (untreated sample). Results indicated that the quantities of fat, ash, crude fiber, and carbohydrate changed on the basis of ACP treatment intensity (i.e., exposure time and the voltage applied during the treatment), suggesting that the intensity and effects of plasma-activated species play a key role in this process. In terms of in vitro starch digestibility, a significant increase was observed, from 40.14% in the control to 64.99% in the sample treated for 8 min at 8.5 kV (designated as S4). A similar trend was noted for in vitro protein digestibility, which increased from 68.39% in the control to 85.54% in S4. These improvements are attributed to the depolymerization and side-chain cleavage induced by plasma-activated species during ACP treatment. Moreover, ACP treatment led to an increase in both polyphenol content and antioxidant activity. Polyphenol content rose from 41.59 mg GAE/g in the control to 64.98 mg GAE/g in S4, while antioxidant activity increased from 68.39% to 85.45%. The enhancement in antioxidant activity may also be partly due to UV radiation generated during plasma production, which can stimulate the formation of secondary metabolites. Overall, the findings demonstrate that the effects of ACP treatment on the various parameters examined—such as proximate composition, digestibility, phenolic content, and antioxidant activity—are influenced by exposure time and voltage. These variations appear to be primarily driven by the action of plasma-activated species.</p>","PeriodicalId":15717,"journal":{"name":"Journal of Food Processing and Preservation","volume":"2025 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/jfpp/8829261","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Processing and Preservation","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/jfpp/8829261","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the potential effects of atmospheric pressure cold plasma (ACP) treatment as a novel nonthermal processing method for plant-derived products, specifically focusing on chia seeds, a rich source of nutrients. The impacts of ACP treatment (at intensities of 6.5 kV for 3 min, 6.5 kV for 8 min, 8.5 kV for 3 min, and 8.5 kV for 8 min, which are called S1, S2, S3, and S4, respectively) on radical scavenging and antioxidant activities, phenolic content, and some nutritional characteristics of chia seeds were examined and compared with the control sample (untreated sample). Results indicated that the quantities of fat, ash, crude fiber, and carbohydrate changed on the basis of ACP treatment intensity (i.e., exposure time and the voltage applied during the treatment), suggesting that the intensity and effects of plasma-activated species play a key role in this process. In terms of in vitro starch digestibility, a significant increase was observed, from 40.14% in the control to 64.99% in the sample treated for 8 min at 8.5 kV (designated as S4). A similar trend was noted for in vitro protein digestibility, which increased from 68.39% in the control to 85.54% in S4. These improvements are attributed to the depolymerization and side-chain cleavage induced by plasma-activated species during ACP treatment. Moreover, ACP treatment led to an increase in both polyphenol content and antioxidant activity. Polyphenol content rose from 41.59 mg GAE/g in the control to 64.98 mg GAE/g in S4, while antioxidant activity increased from 68.39% to 85.45%. The enhancement in antioxidant activity may also be partly due to UV radiation generated during plasma production, which can stimulate the formation of secondary metabolites. Overall, the findings demonstrate that the effects of ACP treatment on the various parameters examined—such as proximate composition, digestibility, phenolic content, and antioxidant activity—are influenced by exposure time and voltage. These variations appear to be primarily driven by the action of plasma-activated species.
期刊介绍:
The journal presents readers with the latest research, knowledge, emerging technologies, and advances in food processing and preservation. Encompassing chemical, physical, quality, and engineering properties of food materials, the Journal of Food Processing and Preservation provides a balance between fundamental chemistry and engineering principles and applicable food processing and preservation technologies.
This is the only journal dedicated to publishing both fundamental and applied research relating to food processing and preservation, benefiting the research, commercial, and industrial communities. It publishes research articles directed at the safe preservation and successful consumer acceptance of unique, innovative, non-traditional international or domestic foods. In addition, the journal features important discussions of current economic and regulatory policies and their effects on the safe and quality processing and preservation of a wide array of foods.