The Turbulent Pressure Spectrum Within the Roughness Sublayer of a Subarctic Forest Canopy

IF 3.8 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of Geophysical Research: Atmospheres Pub Date : 2025-02-18 DOI:10.1029/2024JD042206
Toprak Aslan, Gabriel G. Katul, Mika Aurela
{"title":"The Turbulent Pressure Spectrum Within the Roughness Sublayer of a Subarctic Forest Canopy","authors":"Toprak Aslan,&nbsp;Gabriel G. Katul,&nbsp;Mika Aurela","doi":"10.1029/2024JD042206","DOIUrl":null,"url":null,"abstract":"<p>The turbulent static pressure spectrum <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>E</mi>\n <mrow>\n <mi>p</mi>\n <mi>p</mi>\n </mrow>\n </msub>\n <mfenced>\n <msub>\n <mi>k</mi>\n <mi>x</mi>\n </msub>\n </mfenced>\n </mrow>\n <annotation> ${E}_{pp}\\left({k}_{x}\\right)$</annotation>\n </semantics></math> as a function of longitudinal wavenumber <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>k</mi>\n <mi>x</mi>\n </msub>\n </mrow>\n <annotation> ${k}_{x}$</annotation>\n </semantics></math> in the roughness sublayer of forested canopies is of interest to a plethora of problems such as pressure transport in the turbulent kinetic energy budget, pressure pumping from snow or forest floor, and coupling between flow within and above canopies. Long term static pressure measurements above a sub-arctic forested canopy for near-neutral conditions during the winter and spring were collected and analyzed for three snow cover conditions: trees and ground covered with snow, trees are snow free but the ground is covered with snow, and snow free cover. In all three cases, it is shown that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>E</mi>\n <mrow>\n <mi>p</mi>\n <mi>p</mi>\n </mrow>\n </msub>\n <mfenced>\n <msub>\n <mi>k</mi>\n <mi>x</mi>\n </msub>\n </mfenced>\n </mrow>\n <annotation> ${E}_{pp}\\left({k}_{x}\\right)$</annotation>\n </semantics></math> obeys the attached eddy hypothesis at low wavenumbers <span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <mrow>\n <mn>1</mn>\n <mo>/</mo>\n <mi>δ</mi>\n <mo>&lt;</mo>\n <msub>\n <mi>k</mi>\n <mi>x</mi>\n </msub>\n <mo>&lt;</mo>\n <mn>1</mn>\n <mo>/</mo>\n <mi>z</mi>\n </mrow>\n </mfenced>\n </mrow>\n <annotation> $\\left(1/\\delta &lt; {k}_{x}&lt; 1/z\\right)$</annotation>\n </semantics></math>—with <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>E</mi>\n <mrow>\n <mi>p</mi>\n <mi>p</mi>\n </mrow>\n </msub>\n <mfenced>\n <msub>\n <mi>k</mi>\n <mi>x</mi>\n </msub>\n </mfenced>\n <mo>∝</mo>\n <msubsup>\n <mi>u</mi>\n <mo>∗</mo>\n <mn>4</mn>\n </msubsup>\n <msubsup>\n <mi>k</mi>\n <mi>x</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msubsup>\n </mrow>\n <annotation> ${E}_{pp}\\left({k}_{x}\\right)\\propto {u}_{\\ast }^{4}{k}_{x}^{-1}$</annotation>\n </semantics></math> and Kolmogorov scaling in the inertial subrange at higher wavenumbers—with <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>E</mi>\n <mrow>\n <mi>p</mi>\n <mi>p</mi>\n </mrow>\n </msub>\n <mfenced>\n <msub>\n <mi>k</mi>\n <mi>x</mi>\n </msub>\n </mfenced>\n <mo>∝</mo>\n <msup>\n <mi>ϵ</mi>\n <mrow>\n <mn>4</mn>\n <mo>/</mo>\n <mn>3</mn>\n </mrow>\n </msup>\n <msubsup>\n <mi>k</mi>\n <mi>x</mi>\n <mrow>\n <mo>−</mo>\n <mn>7</mn>\n <mo>/</mo>\n <mn>3</mn>\n </mrow>\n </msubsup>\n </mrow>\n <annotation> ${E}_{pp}\\left({k}_{x}\\right)\\propto {{\\epsilon}}^{4/3}{k}_{x}^{-7/3}$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>u</mi>\n <mo>∗</mo>\n </msub>\n </mrow>\n <annotation> ${u}_{\\ast }$</annotation>\n </semantics></math> is the friction velocity at the canopy top, <span></span><math>\n <semantics>\n <mrow>\n <mi>ϵ</mi>\n </mrow>\n <annotation> ${\\epsilon}$</annotation>\n </semantics></math> is the mean turbulent kinetic energy dissipation rate, <span></span><math>\n <semantics>\n <mrow>\n <mi>z</mi>\n </mrow>\n <annotation> $z$</annotation>\n </semantics></math> is the distance from the snow top, and <span></span><math>\n <semantics>\n <mrow>\n <mi>δ</mi>\n </mrow>\n <annotation> $\\delta $</annotation>\n </semantics></math> is the boundary layer depth. The implications of these two scaling laws to the normalized root-mean squared pressure <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>C</mi>\n <mi>p</mi>\n </msub>\n <mo>=</mo>\n <msub>\n <mi>σ</mi>\n <mi>p</mi>\n </msub>\n <mo>/</mo>\n <msubsup>\n <mi>u</mi>\n <mo>∗</mo>\n <mn>2</mn>\n </msubsup>\n </mrow>\n <annotation> ${C}_{p}={\\sigma }_{p}/{u}_{\\ast }^{2}$</annotation>\n </semantics></math> and its newly proposed logarithmic scaling with normalized wall-normal distance <span></span><math>\n <semantics>\n <mrow>\n <mi>z</mi>\n <mo>/</mo>\n <mi>δ</mi>\n </mrow>\n <annotation> $z/\\delta $</annotation>\n </semantics></math> are discussed for snow covered and snow free vegetation conditions. The work here also shows that the <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>k</mi>\n <mi>x</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msubsup>\n </mrow>\n <annotation> ${k}_{x}^{-1}$</annotation>\n </semantics></math> in the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>E</mi>\n <mrow>\n <mi>p</mi>\n <mi>p</mi>\n </mrow>\n </msub>\n <mfenced>\n <msub>\n <mi>k</mi>\n <mi>x</mi>\n </msub>\n </mfenced>\n </mrow>\n <annotation> ${E}_{pp}\\left({k}_{x}\\right)$</annotation>\n </semantics></math> appears more extensive and robust than its longitudinal velocity counterpart.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"130 4","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JD042206","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JD042206","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The turbulent static pressure spectrum E p p k x ${E}_{pp}\left({k}_{x}\right)$ as a function of longitudinal wavenumber k x ${k}_{x}$ in the roughness sublayer of forested canopies is of interest to a plethora of problems such as pressure transport in the turbulent kinetic energy budget, pressure pumping from snow or forest floor, and coupling between flow within and above canopies. Long term static pressure measurements above a sub-arctic forested canopy for near-neutral conditions during the winter and spring were collected and analyzed for three snow cover conditions: trees and ground covered with snow, trees are snow free but the ground is covered with snow, and snow free cover. In all three cases, it is shown that E p p k x ${E}_{pp}\left({k}_{x}\right)$ obeys the attached eddy hypothesis at low wavenumbers 1 / δ < k x < 1 / z $\left(1/\delta < {k}_{x}< 1/z\right)$ —with E p p k x u 4 k x 1 ${E}_{pp}\left({k}_{x}\right)\propto {u}_{\ast }^{4}{k}_{x}^{-1}$ and Kolmogorov scaling in the inertial subrange at higher wavenumbers—with E p p k x ϵ 4 / 3 k x 7 / 3 ${E}_{pp}\left({k}_{x}\right)\propto {{\epsilon}}^{4/3}{k}_{x}^{-7/3}$ , where u ${u}_{\ast }$ is the friction velocity at the canopy top, ϵ ${\epsilon}$ is the mean turbulent kinetic energy dissipation rate, z $z$ is the distance from the snow top, and δ $\delta $ is the boundary layer depth. The implications of these two scaling laws to the normalized root-mean squared pressure C p = σ p / u 2 ${C}_{p}={\sigma }_{p}/{u}_{\ast }^{2}$ and its newly proposed logarithmic scaling with normalized wall-normal distance z / δ $z/\delta $ are discussed for snow covered and snow free vegetation conditions. The work here also shows that the k x 1 ${k}_{x}^{-1}$ in the E p p k x ${E}_{pp}\left({k}_{x}\right)$ appears more extensive and robust than its longitudinal velocity counterpart.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
期刊最新文献
Spatial and Temporal Scales of Riming Events in Nonconvective Clouds Derived From Long-Term Cloud Radar Observations in Germany Comparison of Cloud/Rain Band Structures Between High-Resolution Numerical Simulation of Typhoon Lekima (2019) and FY-4A Advanced Geostationary Radiation Imager Observations PDO Modulates Co-Occurring Summertime Marine Heatwaves in the Extratropical North Pacific and Atlantic Modeling the Impact of the Bidirectional Exchange of NH3 From the Great Lakes on a Regional and Local Scale Using GEM-MACH Novel Isotopic Evidence Unveils Greater Contributions of Waste Incineration to PM2.5-Bound Antimony in Two Mega-Cities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1