Andrew Miller, James Peter Beck, Alexis White, Jayant Agarwal, Kent N. Bachus, Sujee Jeyapalina, Mark Van Dyke
{"title":"Utilization of Bulk RNA Sequencing for the Evaluation of Keratin Nanomaterials as a Coating for Percutaneous Devices","authors":"Andrew Miller, James Peter Beck, Alexis White, Jayant Agarwal, Kent N. Bachus, Sujee Jeyapalina, Mark Van Dyke","doi":"10.1002/jbm.b.35551","DOIUrl":null,"url":null,"abstract":"<p>Despite advances in the design and protocols for maintaining the skin/device interface around percutaneous devices (PDs), no current strategy ensures the permanent attachment of peri-implant epithelial tissue to the device surface. Based on preliminary data, we hypothesized that PDs coated with keratin nanomaterials, resembling the fingernail-nailbed interface, could provide a biochemically mediated surface that enhances epidermal cell adhesion and differentiation. To test this hypothesis, 15 Yucatan miniature pigs were each implanted with six percutaneous titanium devices, comprising three porous and three smooth devices, both with and without keratin coatings (Kerateine [iKNT] and Keratose [gKOS]). The pigs were sacrificed at 4, 8, and 16 weeks post-implantation. The devices and surrounding tissues were harvested and analyzed using histological and RNA sequencing techniques. Compared to smooth peri-implant tissue, porous peri-implant tissue showed a significant decrease in epithelial downgrowth, fibrous capsule thickness, and infection rates, alongside a significant upregulation of multiple immune marker genes, including IL12B. At the 16-week period, gKOS-coated surfaces demonstrated a more favorable wound healing response than iKTN-coated devices, with a reduction in granulation tissue area and a significant upregulation of several keratin genes related to differentiation. Among the combinations of surface types and coatings studied, the porous gKOS-coated device produced the most favorable wound healing response.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 3","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.b.35551","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35551","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Despite advances in the design and protocols for maintaining the skin/device interface around percutaneous devices (PDs), no current strategy ensures the permanent attachment of peri-implant epithelial tissue to the device surface. Based on preliminary data, we hypothesized that PDs coated with keratin nanomaterials, resembling the fingernail-nailbed interface, could provide a biochemically mediated surface that enhances epidermal cell adhesion and differentiation. To test this hypothesis, 15 Yucatan miniature pigs were each implanted with six percutaneous titanium devices, comprising three porous and three smooth devices, both with and without keratin coatings (Kerateine [iKNT] and Keratose [gKOS]). The pigs were sacrificed at 4, 8, and 16 weeks post-implantation. The devices and surrounding tissues were harvested and analyzed using histological and RNA sequencing techniques. Compared to smooth peri-implant tissue, porous peri-implant tissue showed a significant decrease in epithelial downgrowth, fibrous capsule thickness, and infection rates, alongside a significant upregulation of multiple immune marker genes, including IL12B. At the 16-week period, gKOS-coated surfaces demonstrated a more favorable wound healing response than iKTN-coated devices, with a reduction in granulation tissue area and a significant upregulation of several keratin genes related to differentiation. Among the combinations of surface types and coatings studied, the porous gKOS-coated device produced the most favorable wound healing response.
期刊介绍:
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats:
• original research reports
• short research and development reports
• scientific reviews
• current concepts articles
• special reports
• editorials
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.