Utilization of Bulk RNA Sequencing for the Evaluation of Keratin Nanomaterials as a Coating for Percutaneous Devices

IF 3.2 4区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of biomedical materials research. Part B, Applied biomaterials Pub Date : 2025-02-17 DOI:10.1002/jbm.b.35551
Andrew Miller, James Peter Beck, Alexis White, Jayant Agarwal, Kent N. Bachus, Sujee Jeyapalina, Mark Van Dyke
{"title":"Utilization of Bulk RNA Sequencing for the Evaluation of Keratin Nanomaterials as a Coating for Percutaneous Devices","authors":"Andrew Miller,&nbsp;James Peter Beck,&nbsp;Alexis White,&nbsp;Jayant Agarwal,&nbsp;Kent N. Bachus,&nbsp;Sujee Jeyapalina,&nbsp;Mark Van Dyke","doi":"10.1002/jbm.b.35551","DOIUrl":null,"url":null,"abstract":"<p>Despite advances in the design and protocols for maintaining the skin/device interface around percutaneous devices (PDs), no current strategy ensures the permanent attachment of peri-implant epithelial tissue to the device surface. Based on preliminary data, we hypothesized that PDs coated with keratin nanomaterials, resembling the fingernail-nailbed interface, could provide a biochemically mediated surface that enhances epidermal cell adhesion and differentiation. To test this hypothesis, 15 Yucatan miniature pigs were each implanted with six percutaneous titanium devices, comprising three porous and three smooth devices, both with and without keratin coatings (Kerateine [iKNT] and Keratose [gKOS]). The pigs were sacrificed at 4, 8, and 16 weeks post-implantation. The devices and surrounding tissues were harvested and analyzed using histological and RNA sequencing techniques. Compared to smooth peri-implant tissue, porous peri-implant tissue showed a significant decrease in epithelial downgrowth, fibrous capsule thickness, and infection rates, alongside a significant upregulation of multiple immune marker genes, including IL12B. At the 16-week period, gKOS-coated surfaces demonstrated a more favorable wound healing response than iKTN-coated devices, with a reduction in granulation tissue area and a significant upregulation of several keratin genes related to differentiation. Among the combinations of surface types and coatings studied, the porous gKOS-coated device produced the most favorable wound healing response.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 3","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.b.35551","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35551","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Despite advances in the design and protocols for maintaining the skin/device interface around percutaneous devices (PDs), no current strategy ensures the permanent attachment of peri-implant epithelial tissue to the device surface. Based on preliminary data, we hypothesized that PDs coated with keratin nanomaterials, resembling the fingernail-nailbed interface, could provide a biochemically mediated surface that enhances epidermal cell adhesion and differentiation. To test this hypothesis, 15 Yucatan miniature pigs were each implanted with six percutaneous titanium devices, comprising three porous and three smooth devices, both with and without keratin coatings (Kerateine [iKNT] and Keratose [gKOS]). The pigs were sacrificed at 4, 8, and 16 weeks post-implantation. The devices and surrounding tissues were harvested and analyzed using histological and RNA sequencing techniques. Compared to smooth peri-implant tissue, porous peri-implant tissue showed a significant decrease in epithelial downgrowth, fibrous capsule thickness, and infection rates, alongside a significant upregulation of multiple immune marker genes, including IL12B. At the 16-week period, gKOS-coated surfaces demonstrated a more favorable wound healing response than iKTN-coated devices, with a reduction in granulation tissue area and a significant upregulation of several keratin genes related to differentiation. Among the combinations of surface types and coatings studied, the porous gKOS-coated device produced the most favorable wound healing response.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.50
自引率
2.90%
发文量
199
审稿时长
12 months
期刊介绍: Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats: • original research reports • short research and development reports • scientific reviews • current concepts articles • special reports • editorials Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.
期刊最新文献
Synthesis and Characterization of Bioactive Glass via CTAB Modified Sol-Gel Method for In Vitro Biological Activities Vitamin D Screening and Supplementation—A Novel Approach to Higher Success: An Update and Review of the Current Literature Are All Alginate Dressings Equivalent? Effect of Microporous Surface Zirconia on Mechanical Properties and Biological Behavior of Human Gingival Fibroblasts In Vivo Evaluation of Thermally Drawn Biodegradable Optical Fibers as Brain Implants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1