{"title":"Imaging-Based Prediction of Ki-67 Expression in Hepatocellular Carcinoma: A Retrospective Study","authors":"Chiyu Cai, Liancai Wang, Lianyuan Tao, Hengli Zhu, Yongnian Ren, Deyu Li, Dongxiao Li","doi":"10.1002/cam4.70562","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aim</h3>\n \n <p>This study aims to develop a non-invasive, preoperative predictive model for Ki-67 expression in HCC patients using enhanced computed tomography (CT) and clinical indicators to improve patient outcomes.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>This retrospective study analyzed 595 post-curative hepatectomy HCC patients. Patients were categorized into high (> 20%) and low (≤ 20%) Ki-67 expression groups based on cellular proliferation levels. Radiomic features were extracted from enhanced CT scans and combined with clinical parameters to develop a predictive model for Ki-67 expression.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Key clinical factors impacting Ki-67 expression in HCC included alpha-fetoprotein (AFP), non-smooth tumor margin, ill-defined pseudo-capsule, and peritumoral star node. From 1441 initially extracted radiomic features, 16 key features were selected using Lasso regression. These features were used to develop a radiomics model, which, when combined with clinical data, yielded an integrated predictive model with high accuracy. The combined model achieved an area under the curve (AUC) of 0.854 in the training group and 0.839 in the validation group. A nomogram based on this model was constructed, and its predictive accuracy was validated through calibration curves and decision curve analysis. A risk scorecard model was also constructed as a practical tool for clinicians to assess the risk level of high Ki-67 expression, facilitating personalized treatment planning. Survival analysis demonstrated significant differences in 3-year overall survival (OS) and progression-free survival (PFS) rates between patients with high and low Ki-67 expression, indicating the model's strong prognostic capability.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>This study successfully developed a comprehensive model that integrates radiomic and clinical data for the preoperative prediction of Ki-67 expression in HCC patients.</p>\n </section>\n </div>","PeriodicalId":139,"journal":{"name":"Cancer Medicine","volume":"14 4","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cam4.70562","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Medicine","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cam4.70562","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aim
This study aims to develop a non-invasive, preoperative predictive model for Ki-67 expression in HCC patients using enhanced computed tomography (CT) and clinical indicators to improve patient outcomes.
Methods
This retrospective study analyzed 595 post-curative hepatectomy HCC patients. Patients were categorized into high (> 20%) and low (≤ 20%) Ki-67 expression groups based on cellular proliferation levels. Radiomic features were extracted from enhanced CT scans and combined with clinical parameters to develop a predictive model for Ki-67 expression.
Results
Key clinical factors impacting Ki-67 expression in HCC included alpha-fetoprotein (AFP), non-smooth tumor margin, ill-defined pseudo-capsule, and peritumoral star node. From 1441 initially extracted radiomic features, 16 key features were selected using Lasso regression. These features were used to develop a radiomics model, which, when combined with clinical data, yielded an integrated predictive model with high accuracy. The combined model achieved an area under the curve (AUC) of 0.854 in the training group and 0.839 in the validation group. A nomogram based on this model was constructed, and its predictive accuracy was validated through calibration curves and decision curve analysis. A risk scorecard model was also constructed as a practical tool for clinicians to assess the risk level of high Ki-67 expression, facilitating personalized treatment planning. Survival analysis demonstrated significant differences in 3-year overall survival (OS) and progression-free survival (PFS) rates between patients with high and low Ki-67 expression, indicating the model's strong prognostic capability.
Conclusions
This study successfully developed a comprehensive model that integrates radiomic and clinical data for the preoperative prediction of Ki-67 expression in HCC patients.
期刊介绍:
Cancer Medicine is a peer-reviewed, open access, interdisciplinary journal providing rapid publication of research from global biomedical researchers across the cancer sciences. The journal will consider submissions from all oncologic specialties, including, but not limited to, the following areas:
Clinical Cancer Research
Translational research ∙ clinical trials ∙ chemotherapy ∙ radiation therapy ∙ surgical therapy ∙ clinical observations ∙ clinical guidelines ∙ genetic consultation ∙ ethical considerations
Cancer Biology:
Molecular biology ∙ cellular biology ∙ molecular genetics ∙ genomics ∙ immunology ∙ epigenetics ∙ metabolic studies ∙ proteomics ∙ cytopathology ∙ carcinogenesis ∙ drug discovery and delivery.
Cancer Prevention:
Behavioral science ∙ psychosocial studies ∙ screening ∙ nutrition ∙ epidemiology and prevention ∙ community outreach.
Bioinformatics:
Gene expressions profiles ∙ gene regulation networks ∙ genome bioinformatics ∙ pathwayanalysis ∙ prognostic biomarkers.
Cancer Medicine publishes original research articles, systematic reviews, meta-analyses, and research methods papers, along with invited editorials and commentaries. Original research papers must report well-conducted research with conclusions supported by the data presented in the paper.