Sebastian T. Schenk, Virginie Brehaut, Camille Chardin, Marie Boudsocq, Anne Marmagne, Jean Colcombet, Anne Krapp
{"title":"Nitrate activates an MKK3-dependent MAPK module via NLP transcription factors in Arabidopsis","authors":"Sebastian T. Schenk, Virginie Brehaut, Camille Chardin, Marie Boudsocq, Anne Marmagne, Jean Colcombet, Anne Krapp","doi":"10.1111/tpj.70010","DOIUrl":null,"url":null,"abstract":"<p>Plant responses to nutrient availability are critical for plant development and yield. Nitrate, the major form of nitrogen in most soils, serves as both a nutrient and signaling molecule. Nitrate itself triggers rapid, major changes in gene expression, especially via nodule inception (NIN)-like protein (NLP) transcription factors, and stimulates protein phosphorylation. Mitogen-activated protein kinase (MAPK)-related genes are among the early nitrate-responsive genes; however, little is known about their roles in nitrate signaling pathways. Here, we show that nitrate resupply to nitrogen-depleted Arabidopsis (<i>Arabidopsis thaliana</i>) plants triggers, within minutes, an MAPK cascade that requires NLP-dependent transcriptional induction of <i>mitogen-activated protein kinase kinase kinase 13</i> (<i>MAP3K13</i>) and <i>MAP3K14</i> and that the MAPK cascade is composed of MKK3 and likely C-clade MAPKs (MPK1/2/7/14). Importantly, nitrate reductase-deficient mutants exhibited nitrate-induced MPK7 activities comparable to those observed in wild-type plants, indicating that nitrate itself is the signal that stimulates the cascade. We show that the modified expression of <i>MAP3K13</i> and <i>MAP3K14</i> affects nitrate-stimulated <i>BT2</i> expression and modulates plant responses to nitrogen availability, such as nitrate uptake and senescence. Our finding that an MAPK cascade involving MAP3K13 and MAP3K14 functions in the complex regulatory network governing responses to nitrate availability will guide future strategies to optimize plant responses to nitrogen fertilization and nitrogen use efficiency.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"121 4","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/tpj.70010","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tpj.70010","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Plant responses to nutrient availability are critical for plant development and yield. Nitrate, the major form of nitrogen in most soils, serves as both a nutrient and signaling molecule. Nitrate itself triggers rapid, major changes in gene expression, especially via nodule inception (NIN)-like protein (NLP) transcription factors, and stimulates protein phosphorylation. Mitogen-activated protein kinase (MAPK)-related genes are among the early nitrate-responsive genes; however, little is known about their roles in nitrate signaling pathways. Here, we show that nitrate resupply to nitrogen-depleted Arabidopsis (Arabidopsis thaliana) plants triggers, within minutes, an MAPK cascade that requires NLP-dependent transcriptional induction of mitogen-activated protein kinase kinase kinase 13 (MAP3K13) and MAP3K14 and that the MAPK cascade is composed of MKK3 and likely C-clade MAPKs (MPK1/2/7/14). Importantly, nitrate reductase-deficient mutants exhibited nitrate-induced MPK7 activities comparable to those observed in wild-type plants, indicating that nitrate itself is the signal that stimulates the cascade. We show that the modified expression of MAP3K13 and MAP3K14 affects nitrate-stimulated BT2 expression and modulates plant responses to nitrogen availability, such as nitrate uptake and senescence. Our finding that an MAPK cascade involving MAP3K13 and MAP3K14 functions in the complex regulatory network governing responses to nitrate availability will guide future strategies to optimize plant responses to nitrogen fertilization and nitrogen use efficiency.
期刊介绍:
Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community.
Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.