Mohammed Alabdali, Franco M. Zanotto, Benoît Notredame, Virginie Viallet, Vincent Seznec, Alejandro A. Franco
{"title":"Cover Feature: Experimental and Computational Analysis of Slurry-Based Manufacturing of Solid-State Battery Composite Cathode (Batteries & Supercaps 2/2025)","authors":"Mohammed Alabdali, Franco M. Zanotto, Benoît Notredame, Virginie Viallet, Vincent Seznec, Alejandro A. Franco","doi":"10.1002/batt.202580202","DOIUrl":null,"url":null,"abstract":"<p><b>The Cover Feature</b> showcases the manufacturing journey of solid-state battery composite electrodes, capturing the transition of the microstructure across key stages: slurry, drying, and calendering. It features a modeling workflow for battery cathodes composed of LiNi<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub>O<sub>2</sub> and Li<sub>6</sub>PS<sub>5</sub>Cl, unveiling the impact of processing on microstructural evolution, with results validated against experimental data. More information can be found in the Research Article by A. A. Franco and co-workers (DOI: 10.1002/batt.202400709).\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure>\n </p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 2","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202580202","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/batt.202580202","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
The Cover Feature showcases the manufacturing journey of solid-state battery composite electrodes, capturing the transition of the microstructure across key stages: slurry, drying, and calendering. It features a modeling workflow for battery cathodes composed of LiNi0.8Mn0.1Co0.1O2 and Li6PS5Cl, unveiling the impact of processing on microstructural evolution, with results validated against experimental data. More information can be found in the Research Article by A. A. Franco and co-workers (DOI: 10.1002/batt.202400709).
期刊介绍:
Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.