Cell Cycle Arrest, Apoptosis Assay, Cytotoxicity, Molecular Docking, DNA Binding/Cleavage, and Biological Evaluation of Pt(II), Ni(II), Pd(II), and Cu(II) Nano-Sized Complexes of 2-(6-Fluorobenzo[d]thiazol-2-yl)phenol: Design, Synthesis, and Spectral Approach

IF 3.7 2区 化学 Q2 CHEMISTRY, APPLIED Applied Organometallic Chemistry Pub Date : 2025-02-17 DOI:10.1002/aoc.70060
Abdel-Nasser M. A. Alaghaz, Othman Hakami, Abdullah Ali Alamri, Nasser Amri, G. Souadi, Sharah A. Aldulmani
{"title":"Cell Cycle Arrest, Apoptosis Assay, Cytotoxicity, Molecular Docking, DNA Binding/Cleavage, and Biological Evaluation of Pt(II), Ni(II), Pd(II), and Cu(II) Nano-Sized Complexes of 2-(6-Fluorobenzo[d]thiazol-2-yl)phenol: Design, Synthesis, and Spectral Approach","authors":"Abdel-Nasser M. A. Alaghaz,&nbsp;Othman Hakami,&nbsp;Abdullah Ali Alamri,&nbsp;Nasser Amri,&nbsp;G. Souadi,&nbsp;Sharah A. Aldulmani","doi":"10.1002/aoc.70060","DOIUrl":null,"url":null,"abstract":"<p>A new novel bidentate benzothiazole ligand, 2-(6-fluorobenzo[d]thiazol-2-yl)phenol (HFBTP), is synthesized through condensing 2-mercaptoaniline and 2-hydroxybenzoic acid in 1:1 ratio. Nano-sized bivalent metal complexes are created and subsequently characterized using various physical methods. Based on the elemental analysis results, the complexes are inferred to follow the overall formula [M (FBTBT)<sub>2</sub>] (as M = Cu(II) (S1), Ni(II) (S2), Pd(II) (S3), and Pt(II) (S4) and FBTP = Ligand). Quantum chemical calculations, along with electronic spectra, electron paramagnetic resonance (EPR), cyclic voltammetry (CV), and magnetic susceptibility findings, indicate that all complexes exhibit a square planar configuration. The SEM, EDX, and AFM analyses of the studied complex unveils distinct and strong diffraction peaks, indicating its crystalline nature and providing evidence of its nano-sized particle sizes. The in vitro antimicrobial efficacy of the ligand and metal complexes was inspected against various bacterial and fungal pathogens. Viscosity measurements and UV–visible absorption were used to study the binding interactions of S1–S4 with calf thymus DNA. The DNA cleavage ability of S1–S4 with pUC19 DNA indicates that the complexes can cleave DNA without the use of any external agents. The complexes showed significantly high cytotoxicity against PC3 (prostate cancer cells). Moreover, M(II) complexes exhibited the capability for triggering DNA damage in HePG2 cells, resulting in dose-dependent cell apoptosis. Subsequent investigations revealed that complex triggered cell cycle arrest during the S and G2 phases.</p>","PeriodicalId":8344,"journal":{"name":"Applied Organometallic Chemistry","volume":"39 3","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Organometallic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aoc.70060","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A new novel bidentate benzothiazole ligand, 2-(6-fluorobenzo[d]thiazol-2-yl)phenol (HFBTP), is synthesized through condensing 2-mercaptoaniline and 2-hydroxybenzoic acid in 1:1 ratio. Nano-sized bivalent metal complexes are created and subsequently characterized using various physical methods. Based on the elemental analysis results, the complexes are inferred to follow the overall formula [M (FBTBT)2] (as M = Cu(II) (S1), Ni(II) (S2), Pd(II) (S3), and Pt(II) (S4) and FBTP = Ligand). Quantum chemical calculations, along with electronic spectra, electron paramagnetic resonance (EPR), cyclic voltammetry (CV), and magnetic susceptibility findings, indicate that all complexes exhibit a square planar configuration. The SEM, EDX, and AFM analyses of the studied complex unveils distinct and strong diffraction peaks, indicating its crystalline nature and providing evidence of its nano-sized particle sizes. The in vitro antimicrobial efficacy of the ligand and metal complexes was inspected against various bacterial and fungal pathogens. Viscosity measurements and UV–visible absorption were used to study the binding interactions of S1–S4 with calf thymus DNA. The DNA cleavage ability of S1–S4 with pUC19 DNA indicates that the complexes can cleave DNA without the use of any external agents. The complexes showed significantly high cytotoxicity against PC3 (prostate cancer cells). Moreover, M(II) complexes exhibited the capability for triggering DNA damage in HePG2 cells, resulting in dose-dependent cell apoptosis. Subsequent investigations revealed that complex triggered cell cycle arrest during the S and G2 phases.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Organometallic Chemistry
Applied Organometallic Chemistry 化学-无机化学与核化学
CiteScore
7.80
自引率
10.30%
发文量
408
审稿时长
2.2 months
期刊介绍: All new compounds should be satisfactorily identified and proof of their structure given according to generally accepted standards. Structural reports, such as papers exclusively dealing with synthesis and characterization, analytical techniques, or X-ray diffraction studies of metal-organic or organometallic compounds will not be considered. The editors reserve the right to refuse without peer review any manuscript that does not comply with the aims and scope of the journal. Applied Organometallic Chemistry publishes Full Papers, Reviews, Mini Reviews and Communications of scientific research in all areas of organometallic and metal-organic chemistry involving main group metals, transition metals, lanthanides and actinides. All contributions should contain an explicit application of novel compounds, for instance in materials science, nano science, catalysis, chemical vapour deposition, metal-mediated organic synthesis, polymers, bio-organometallics, metallo-therapy, metallo-diagnostics and medicine. Reviews of books covering aspects of the fields of focus are also published.
期刊最新文献
Comparative Study of Conventional and Ultrasonic-Assisted Synthesis of Co(II)- and Cu(II)-Based MOFs for CO2 Adsorption Study of Alternative Current Conduction Mechanisms on the α-LiFeO2-Based Cathode Materials Comprehensive Exploration of Water-Soluble Schiff Base Complexes of Ni (II), Cu (II), Mn (II), and Ce (III): Electrochemical, Computational, and Biological Studies Synthesis, Characterization, and Application of MOF/COF Hybrid Composite as a Highly Active and Recyclable Catalyst for Multicomponent Synthesis of Chromeno[4,3-b]quinoline-6-ones Adsorptive Removal of Congo Red Dye From Aqueous Media Using Composite of Graphitic Carbon Nitride Nanosheet and the Biopolymer Alginate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1