{"title":"Determination of Halitosis by Exhaled Breath Analysis Using Semiconductor Metal Oxide Sensors and Chemometric Methods","authors":"Mikhail Saveliev, Andrey Volchek, Galina Lavrenova, Ol'ga Malay, Mikhail Grevtsev, Igor Jahatspanian","doi":"10.1002/cem.70012","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Halitosis is a condition associated with bad breath. Although halitosis is a disease in its own right, it is often a symptom of more serious diseases (diabetes mellitus, renal failure, azotemia, etc.). The currently used method for diagnosing halitosis is the organoleptic method, which relies on a trained specialist evaluating the patient's breath odor. This approach to diagnosing halitosis is subjective, uncomfortable for both patient and doctor, and necessitates the involvement of a specially trained professional. As an alternative, instrumental diagnostics employing metal oxide semiconductor (MOS) sensor arrays offer a promising avenue by enabling patient classification through predeveloped models. This paper considers the application of seven MOS sensors of different compositions at three different temperatures. Different methods of chemometric data analysis were applied: <i>k</i>-nearest neighbors (kNN), decision trees (DT), support vector machine (SVM), logistic regression (LR), and projection on latent structures discrimination analysis (PLSDA). All applied methods demonstrated their effectiveness and achieved selectivity, sensitivity, and accuracy values exceeding 85%. Additionally, a combined classifier leveraging responses from all previously studied classifiers was explored, achieving near-perfect classification accuracy.</p>\n </div>","PeriodicalId":15274,"journal":{"name":"Journal of Chemometrics","volume":"39 2","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemometrics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cem.70012","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL WORK","Score":null,"Total":0}
引用次数: 0
Abstract
Halitosis is a condition associated with bad breath. Although halitosis is a disease in its own right, it is often a symptom of more serious diseases (diabetes mellitus, renal failure, azotemia, etc.). The currently used method for diagnosing halitosis is the organoleptic method, which relies on a trained specialist evaluating the patient's breath odor. This approach to diagnosing halitosis is subjective, uncomfortable for both patient and doctor, and necessitates the involvement of a specially trained professional. As an alternative, instrumental diagnostics employing metal oxide semiconductor (MOS) sensor arrays offer a promising avenue by enabling patient classification through predeveloped models. This paper considers the application of seven MOS sensors of different compositions at three different temperatures. Different methods of chemometric data analysis were applied: k-nearest neighbors (kNN), decision trees (DT), support vector machine (SVM), logistic regression (LR), and projection on latent structures discrimination analysis (PLSDA). All applied methods demonstrated their effectiveness and achieved selectivity, sensitivity, and accuracy values exceeding 85%. Additionally, a combined classifier leveraging responses from all previously studied classifiers was explored, achieving near-perfect classification accuracy.
期刊介绍:
The Journal of Chemometrics is devoted to the rapid publication of original scientific papers, reviews and short communications on fundamental and applied aspects of chemometrics. It also provides a forum for the exchange of information on meetings and other news relevant to the growing community of scientists who are interested in chemometrics and its applications. Short, critical review papers are a particularly important feature of the journal, in view of the multidisciplinary readership at which it is aimed.