Phase Transformation-Assisted Sintering for the Fabrication of a Bulk Nanocrystalline Fe–5 at.% Zr Alloy

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Engineering Materials Pub Date : 2025-01-21 DOI:10.1002/adem.202402064
Yubin Cong, Jie Wan, Guibin Shan, Yuzeng Chen
{"title":"Phase Transformation-Assisted Sintering for the Fabrication of a Bulk Nanocrystalline Fe–5 at.% Zr Alloy","authors":"Yubin Cong,&nbsp;Jie Wan,&nbsp;Guibin Shan,&nbsp;Yuzeng Chen","doi":"10.1002/adem.202402064","DOIUrl":null,"url":null,"abstract":"<p>The powder metallurgy route of high-energy ball milling followed by sintering is a common method used to fabricate nanocrystalline (NC) metals. However, the poor thermal stability of NC metals limits the use of high temperatures during sintering, which can result in insufficient densification. In order to achieve a higher relative density at low sintering temperatures, phase transformation-induced volume expansion during sintering is taken advantage of. To prove this hypothesis, NC Fe–5 at.% Zr alloy is sintered at a temperature above A3 (1073 K), which is then decreased below A1 (873 K) to introduce volume expansion caused by phase transformation from austenite to ferrite. For comparison, it is also sintered at a constant temperature above A3 (1073 K). Results show that the proposed strategy can not only enhance the relative density of as-sintered NC Fe–5 at.% Zr alloy, but also ensure a relatively smaller grain size. This study is beneficial for the fabrication of high-performance NC metals.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"27 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adem.202402064","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The powder metallurgy route of high-energy ball milling followed by sintering is a common method used to fabricate nanocrystalline (NC) metals. However, the poor thermal stability of NC metals limits the use of high temperatures during sintering, which can result in insufficient densification. In order to achieve a higher relative density at low sintering temperatures, phase transformation-induced volume expansion during sintering is taken advantage of. To prove this hypothesis, NC Fe–5 at.% Zr alloy is sintered at a temperature above A3 (1073 K), which is then decreased below A1 (873 K) to introduce volume expansion caused by phase transformation from austenite to ferrite. For comparison, it is also sintered at a constant temperature above A3 (1073 K). Results show that the proposed strategy can not only enhance the relative density of as-sintered NC Fe–5 at.% Zr alloy, but also ensure a relatively smaller grain size. This study is beneficial for the fabrication of high-performance NC metals.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Engineering Materials
Advanced Engineering Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
5.60%
发文量
544
审稿时长
1.7 months
期刊介绍: Advanced Engineering Materials is the membership journal of three leading European Materials Societies - German Materials Society/DGM, - French Materials Society/SF2M, - Swiss Materials Federation/SVMT.
期刊最新文献
Issue Information Low Loss Chip-to-Chip Couplers for High-Density Co-Packaged Optics Issue Information Tailoring the Reaction Path: External Crack Initiation in Reactive Al/Ni Multilayers Reactive Multilayers, Their Design and Their Applications: Bonding, Debonding, Repair, Recycle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1