Characterization and genomic insights into the nitrogen metabolism of heterotrophic nitrifying and aerobic denitrifying bacterium Pseudomonas aeruginosa WS-03.

IF 8 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Journal of Environmental Management Pub Date : 2025-03-01 Epub Date: 2025-02-16 DOI:10.1016/j.jenvman.2025.124405
Xinyu Wei, Shanshan Li, Cong Li, Jun Liao, Yinchuan Yang, Zhengming He, Ke Dong, Sang-Seob Lee
{"title":"Characterization and genomic insights into the nitrogen metabolism of heterotrophic nitrifying and aerobic denitrifying bacterium Pseudomonas aeruginosa WS-03.","authors":"Xinyu Wei, Shanshan Li, Cong Li, Jun Liao, Yinchuan Yang, Zhengming He, Ke Dong, Sang-Seob Lee","doi":"10.1016/j.jenvman.2025.124405","DOIUrl":null,"url":null,"abstract":"<p><p>To achieve effective removal of various inorganic nitrogen in aquatic ecosystems, while expanding the applicability of existing heterotrophic nitrifying-aerobic denitrifying (HN-AD) strains and enhancing their stress tolerance, we isolated the Pseudomonas aeruginosa WS-03 from a sewage treatment plant. The results of parameter optimization indicated that the following were the most favorable conditions for nitrogen removal: using sodium citrate as the carbon source, a C/N ratio of 9, a pH of 7, a temperature of 30 °C and an NH<sub>4</sub><sup>+</sup>-N concentrations below 300 mg/L. The maximum reduction rates of nitrogen are 8.96 mg/(L·h), 4.64 mg/(L·h) and 5.12 mg/(L·h) of NH<sub>4</sub><sup>+</sup>-N, NO<sub>3</sub><sup>-</sup>-N and TN, respectively. The result of genome analysis and polymerase chain reaction (PCR) amplification electrophoresis revealed the presence of genes related to nitrogen metabolism, which involves nitrification, denitrification, and assimilation pathways. It also verified that absence of key nitrification genes in strain WS-03, suggesting it operates via a unique denitrification mechanism. Notably, nitrogen assimilation has been identified as the predominant pathway for nitrogen removal by the strain. The strain demonstrated an impressive efficiency of 54.28% in reducing the concentration of NH<sub>4</sub><sup>+</sup>-N in untreated landfill leachate, highlighting its potential for application in practical wastewater treatment. This study comprehensively explored the denitrification characteristics and showed its significant role in environmental remediation.</p>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"376 ","pages":"124405"},"PeriodicalIF":8.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jenvman.2025.124405","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

To achieve effective removal of various inorganic nitrogen in aquatic ecosystems, while expanding the applicability of existing heterotrophic nitrifying-aerobic denitrifying (HN-AD) strains and enhancing their stress tolerance, we isolated the Pseudomonas aeruginosa WS-03 from a sewage treatment plant. The results of parameter optimization indicated that the following were the most favorable conditions for nitrogen removal: using sodium citrate as the carbon source, a C/N ratio of 9, a pH of 7, a temperature of 30 °C and an NH4+-N concentrations below 300 mg/L. The maximum reduction rates of nitrogen are 8.96 mg/(L·h), 4.64 mg/(L·h) and 5.12 mg/(L·h) of NH4+-N, NO3--N and TN, respectively. The result of genome analysis and polymerase chain reaction (PCR) amplification electrophoresis revealed the presence of genes related to nitrogen metabolism, which involves nitrification, denitrification, and assimilation pathways. It also verified that absence of key nitrification genes in strain WS-03, suggesting it operates via a unique denitrification mechanism. Notably, nitrogen assimilation has been identified as the predominant pathway for nitrogen removal by the strain. The strain demonstrated an impressive efficiency of 54.28% in reducing the concentration of NH4+-N in untreated landfill leachate, highlighting its potential for application in practical wastewater treatment. This study comprehensively explored the denitrification characteristics and showed its significant role in environmental remediation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Environmental Management
Journal of Environmental Management 环境科学-环境科学
CiteScore
13.70
自引率
5.70%
发文量
2477
审稿时长
84 days
期刊介绍: The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.
期刊最新文献
Seaweed feed enhance the long-term recovery of bacterial community and carbon-nitrogen sequestration in eutrophic coastal wetland Microbial Fe(III) reduction across a pH gradient: The impacts on secondary mineralization and microbial community development Enhancing textile wastewater reuse: Integrating Fenton oxidation with membrane filtration The impact of noise on green open space value Flood resilience through hybrid deep learning: Advanced forecasting for Taipei's urban drainage system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1