KIF11 Inhibition Induces Retinopathy Progression by Affecting Photoreceptor Cell Ciliogenesis and Cell Cycle Regulation in Development.

IF 3.2 3区 生物学 Q3 MATERIALS SCIENCE, BIOMATERIALS Advanced biology Pub Date : 2025-02-17 DOI:10.1002/adbi.202400748
Yue Xu, Jie Chen, Xin-Yao Wang, Min-Hui Huang, Xiang Wei, Xin-Rui Luo, Ya-Lan Wei, Zhen-Yu She
{"title":"KIF11 Inhibition Induces Retinopathy Progression by Affecting Photoreceptor Cell Ciliogenesis and Cell Cycle Regulation in Development.","authors":"Yue Xu, Jie Chen, Xin-Yao Wang, Min-Hui Huang, Xiang Wei, Xin-Rui Luo, Ya-Lan Wei, Zhen-Yu She","doi":"10.1002/adbi.202400748","DOIUrl":null,"url":null,"abstract":"<p><p>Microcephaly with or without chorioretinopathy, lymphedema, or impaired intellectual development (MCLMR; OMIM 152950) is a rare autosomal dominant disorder, which is primarily characterized by defects in the central nervous system and retinal developmental anomalies. Kinesin-5 KIF11 has been discovered as a major causative gene for MCLMR. It has been well established that KIF11 is essential for microtubule organization, centrosome separation, and spindle assembly during mitosis. However, cellular and molecular mechanisms in the physiopathology of MCLMR remain largely unknown. In this study, KIF11-inhibition mouse models are generated, which reveal that chemical inhibition of KIF11 results in defects in retinal development, the formation of rosettes, photoreceptor ciliary alterations, and vision loss. Furthermore, it is demonstrated that KIF11 is essential for the formation, organization, and maintenance of primary cilia in photoreceptor cells, which further contributes to the organization of photoreceptor cells and the development of the retina. Using the developing mouse embryos as a model, it is revealed that KIF11 inhibition induces the formation of monopolar spindle and mitotic arrest, which further results in tetraploidy and apoptotic cell death. These findings uncover cellular mechanisms underlying the loss-of-function of KIF11 and retinopathy in MCLMR and further support the functions of KIF11 in development.</p>","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":" ","pages":"e2400748"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/adbi.202400748","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Microcephaly with or without chorioretinopathy, lymphedema, or impaired intellectual development (MCLMR; OMIM 152950) is a rare autosomal dominant disorder, which is primarily characterized by defects in the central nervous system and retinal developmental anomalies. Kinesin-5 KIF11 has been discovered as a major causative gene for MCLMR. It has been well established that KIF11 is essential for microtubule organization, centrosome separation, and spindle assembly during mitosis. However, cellular and molecular mechanisms in the physiopathology of MCLMR remain largely unknown. In this study, KIF11-inhibition mouse models are generated, which reveal that chemical inhibition of KIF11 results in defects in retinal development, the formation of rosettes, photoreceptor ciliary alterations, and vision loss. Furthermore, it is demonstrated that KIF11 is essential for the formation, organization, and maintenance of primary cilia in photoreceptor cells, which further contributes to the organization of photoreceptor cells and the development of the retina. Using the developing mouse embryos as a model, it is revealed that KIF11 inhibition induces the formation of monopolar spindle and mitotic arrest, which further results in tetraploidy and apoptotic cell death. These findings uncover cellular mechanisms underlying the loss-of-function of KIF11 and retinopathy in MCLMR and further support the functions of KIF11 in development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced biology
Advanced biology Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
6.60
自引率
0.00%
发文量
130
期刊最新文献
C-X-C Motif Ligand 1 Induces Cell Migration by Upregulating ICAM-1 Expression by Activating PI3K/Akt and NF-κB Signaling Pathway in Liver Cancer. Label-Free Detection of Lipid Accumulation in Cells Using Magnetic Levitation. Mechanical Loading of Osteocytes via Oscillatory Fluid Flow Regulates Early-Stage PC-3 Prostate Cancer Metastasis to Bone. Effects of Naringin and Zinc Treatment on Biochemical, Molecular, and Histological Alterations in Stomach and Pancreatic Tissues of STZ-Induced Diabetic Rats. KIF11 Inhibition Induces Retinopathy Progression by Affecting Photoreceptor Cell Ciliogenesis and Cell Cycle Regulation in Development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1