Traumatic injury leads to ovarian cell death and reproductive disturbances in Drosophila melanogaster.

IF 1.8 4区 生物学 Q3 BIOLOGY Biology Open Pub Date : 2025-02-17 DOI:10.1242/bio.061825
Cameron T Dixon, Pamela Yang, Kimberly McCall
{"title":"Traumatic injury leads to ovarian cell death and reproductive disturbances in Drosophila melanogaster.","authors":"Cameron T Dixon, Pamela Yang, Kimberly McCall","doi":"10.1242/bio.061825","DOIUrl":null,"url":null,"abstract":"<p><p>Traumatic injury (TI), or global blunt force trauma, can arise from many sources such as car crashes, sports and intimate partner violence. Effects from these injuries impact the whole organism and can lead to many different pathologies, such as inflammation, neurodegeneration, gut dysbiosis, and female reproductive detriments. Drosophila melanogaster has recently emerged as a powerful model to study traumatic injuries due to their high conservation of physiological effects post-trauma and the genetic toolset that they leverage. Previously, we reported female specific reproductive deficits post mild TI in Drosophila. Here we investigate the effects of more severe trauma on females and found an increased retention of mature eggs and decrease in egg laying. Additionally, severe trauma led to an increase of midstage egg chamber death and formation of melanization, a known marker of immune activation. These studies provide a valuable invertebrate model to understand disturbances to female reproduction post-trauma.</p>","PeriodicalId":9216,"journal":{"name":"Biology Open","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Open","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/bio.061825","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Traumatic injury (TI), or global blunt force trauma, can arise from many sources such as car crashes, sports and intimate partner violence. Effects from these injuries impact the whole organism and can lead to many different pathologies, such as inflammation, neurodegeneration, gut dysbiosis, and female reproductive detriments. Drosophila melanogaster has recently emerged as a powerful model to study traumatic injuries due to their high conservation of physiological effects post-trauma and the genetic toolset that they leverage. Previously, we reported female specific reproductive deficits post mild TI in Drosophila. Here we investigate the effects of more severe trauma on females and found an increased retention of mature eggs and decrease in egg laying. Additionally, severe trauma led to an increase of midstage egg chamber death and formation of melanization, a known marker of immune activation. These studies provide a valuable invertebrate model to understand disturbances to female reproduction post-trauma.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biology Open
Biology Open BIOLOGY-
CiteScore
3.90
自引率
0.00%
发文量
162
审稿时长
8 weeks
期刊介绍: Biology Open (BiO) is an online Open Access journal that publishes peer-reviewed original research across all aspects of the biological sciences. BiO aims to provide rapid publication for scientifically sound observations and valid conclusions, without a requirement for perceived impact.
期刊最新文献
Ccn2a acts downstream of cx43 to influence joint formation during zebrafish fin regeneration. Early-life environment shapes claw bilateral asymmetry in the European lobster (Homarus gammarus). Traumatic injury leads to ovarian cell death and reproductive disturbances in Drosophila melanogaster. Metabolic depression and non-specific immune response during hibernation of common Asian toad, Duttaphrynus melanostictus. Primed bovine embryonic stem cell lines can be derived at diverse stages of blastocyst development with similar efficiency and molecular characteristics Running title: Stem cells from bovine early blastocysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1