Effects of nitrogen phosphorus ratio and light on phosphorus removal by microalgae in high-phosphorus wastewater.

IF 2.2 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES Environmental Technology Pub Date : 2025-02-16 DOI:10.1080/09593330.2025.2464981
Yupeng Hu, Qi Li, Cong Li
{"title":"Effects of nitrogen phosphorus ratio and light on phosphorus removal by microalgae in high-phosphorus wastewater.","authors":"Yupeng Hu, Qi Li, Cong Li","doi":"10.1080/09593330.2025.2464981","DOIUrl":null,"url":null,"abstract":"<p><p>The removal of phosphorus from wastewater has consistently posed a major focus in the field of wastewater treatment. Microalgae-based phosphorus removal is widely acknowledged as an effective biological approach. However, ensuring the microalgae-mediated high phosphorus concentration removal remains a persistent challenge. In this study, a kind of multicellular microalgae, <i>Klebsormidium</i> sp., was used to explore its ability to remove phosphorus in high-phosphorus wastewater. The phosphorus removal rate by <i>Klebsormidium</i> sp. in highly concentrated (>20 mgP/L) wastewater can exceed 90%. To investigate the phosphorus absorption process, various nitrogen and phosphorus concentrations along with light conditions were employed. The results showed that 50% to 80% of the total phosphorus absorbed by microalgae entered the intracellular polymer. The phosphorus concentration and light intensity did not exert any significant effects on the absorption of phosphorus by microalgae. However, the nitrogen concentration and the light-to-dark ratio significantly influenced the storage of phosphorus by microalgae. At a nitrogen concentration over 300 mgN/L, phosphorus absorption by microalgae was inhibited. A higher light-to-dark ratio increased phosphorus transfer by microalgae, while the light duration exceeds 16 h inhibited it. Microalgae have emerged as promising materials for phosphorus removal in high-phosphorus sewage, the study offering potential solutions for a cleaner and more sustainable future.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1-13"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2025.2464981","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The removal of phosphorus from wastewater has consistently posed a major focus in the field of wastewater treatment. Microalgae-based phosphorus removal is widely acknowledged as an effective biological approach. However, ensuring the microalgae-mediated high phosphorus concentration removal remains a persistent challenge. In this study, a kind of multicellular microalgae, Klebsormidium sp., was used to explore its ability to remove phosphorus in high-phosphorus wastewater. The phosphorus removal rate by Klebsormidium sp. in highly concentrated (>20 mgP/L) wastewater can exceed 90%. To investigate the phosphorus absorption process, various nitrogen and phosphorus concentrations along with light conditions were employed. The results showed that 50% to 80% of the total phosphorus absorbed by microalgae entered the intracellular polymer. The phosphorus concentration and light intensity did not exert any significant effects on the absorption of phosphorus by microalgae. However, the nitrogen concentration and the light-to-dark ratio significantly influenced the storage of phosphorus by microalgae. At a nitrogen concentration over 300 mgN/L, phosphorus absorption by microalgae was inhibited. A higher light-to-dark ratio increased phosphorus transfer by microalgae, while the light duration exceeds 16 h inhibited it. Microalgae have emerged as promising materials for phosphorus removal in high-phosphorus sewage, the study offering potential solutions for a cleaner and more sustainable future.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Technology
Environmental Technology 环境科学-环境科学
CiteScore
6.50
自引率
3.60%
发文量
0
审稿时长
4 months
期刊介绍: Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies. Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months. Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current
期刊最新文献
Assessment of greenhouse gas emissions from coal-fired power plants based on non-dispersive infrared technique: a case study. Quantification of microplastics in Coptodon rendalli and surface waters of Dikgatlhong Dam, Botswana: the first baseline evidence. Synergistic anaerobic caffeine degradation and bioelectricity production using microbial fuel cell. Accounting carbon emission responsibility on China's ICT sector under different principles based on the EE-MRIO model. Chlorine regeneration of a zeolite ion-exchange column for ammonia removal from an explosives-impacted mining wastewater.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1