Inducing salt stress tolerance in bitter gourd (Momordica chanrantia) through seed treatment with chitosan.

IF 4.1 2区 生物学 Q1 PLANT SCIENCES Frontiers in Plant Science Pub Date : 2025-01-31 eCollection Date: 2024-01-01 DOI:10.3389/fpls.2024.1525561
Ahsan Ali, Fiaz Hussain Ferdosi, Mubeen Sarwar, Sumreen Anjum, Zain Mushtaq, Mehwish Liaquat, Muhammad Taqqi Abbas, Moazzam Anees, Muhammad Rizwan Tariq, M Irfan Ashraf, Abdulrahman Alasmari, Md Sabir Ahmed Mondol, Gholamreza Abdi
{"title":"Inducing salt stress tolerance in bitter gourd (<i>Momordica chanrantia</i>) through seed treatment with chitosan.","authors":"Ahsan Ali, Fiaz Hussain Ferdosi, Mubeen Sarwar, Sumreen Anjum, Zain Mushtaq, Mehwish Liaquat, Muhammad Taqqi Abbas, Moazzam Anees, Muhammad Rizwan Tariq, M Irfan Ashraf, Abdulrahman Alasmari, Md Sabir Ahmed Mondol, Gholamreza Abdi","doi":"10.3389/fpls.2024.1525561","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Bitter gourd requires well-drained sandy to sandy loam soils for optimum growth, development, and germination, while its growth is retarded in extreme saline conditions. It is very sensitive to salinity stress, which imposes devastating limits on its productivity. Thus, the impact of soil salinization on the economics of bitter gourd yield deserves scientific inquiry.</p><p><strong>Methods: </strong>The present study was designed to evaluate the various morphological attributes (mean germination time, germination index, final emergence percentage, measurements of root length, measurement of shoot length, measurement of plant dry biomass, and measurement of plant fresh biomass), physiological attributes (leaf chlorophyll content and electrolyte leakage), biochemical attributes (proline contents, antioxidant enzymes, superoxide dismutase, catalase Q9 , and peroxidase), leaf water relations (leaf osmotic potential, leaf water potential, leaf turgor potential, and leaf relative water content), and ion concentrations (Na+, K+, Ca +, and Cl-) that can be used for the evaluation of salt stress tolerance potential in bitter gourd. The research was conducted in the field area of the Faculty of Agricultural Sciences, University of the Punjab, Lahore.</p><p><strong>Results: </strong>In this experiment, bitter gourd seeds were sowed either without treatment or with hydropriming, 0.01%, 0.02%, 0.03%, 0.04%, and 0.05% chitosan, respectively, under 50mM soil salinity under the climatic conditions of Lahore. This research was designed to find the role of chitosan in inducing salt stress tolerance in bitter gourd plants and also find the best chitosan dose that is useful for higher salinity conditions. Different attributes of bitter gourd were recorded. Results revealed that chitosan application at 0.04% is best for enhancing the salt stress tolerance potential of bitter gourd. Different morphological attributes, physiological attributes, water relation attributes, and biochemical parameters were also recorded. It was observed that pre-sowing treatments with an optimized dose of 0.04% chitosan exhibited significant effects on all the bitter gourd plants and improved the germination rate by improving the salt stress tolerance potential of plants under high salinity.</p><p><strong>Conclusion: </strong>It can be concluded from the present research that the optimized dose of 0.04% chitosan has also proved effective in the enzymatic activity of bitter gourd by enhancing the salt stress potential under increasing salt stress.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"15 ","pages":"1525561"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11825758/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2024.1525561","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Bitter gourd requires well-drained sandy to sandy loam soils for optimum growth, development, and germination, while its growth is retarded in extreme saline conditions. It is very sensitive to salinity stress, which imposes devastating limits on its productivity. Thus, the impact of soil salinization on the economics of bitter gourd yield deserves scientific inquiry.

Methods: The present study was designed to evaluate the various morphological attributes (mean germination time, germination index, final emergence percentage, measurements of root length, measurement of shoot length, measurement of plant dry biomass, and measurement of plant fresh biomass), physiological attributes (leaf chlorophyll content and electrolyte leakage), biochemical attributes (proline contents, antioxidant enzymes, superoxide dismutase, catalase Q9 , and peroxidase), leaf water relations (leaf osmotic potential, leaf water potential, leaf turgor potential, and leaf relative water content), and ion concentrations (Na+, K+, Ca +, and Cl-) that can be used for the evaluation of salt stress tolerance potential in bitter gourd. The research was conducted in the field area of the Faculty of Agricultural Sciences, University of the Punjab, Lahore.

Results: In this experiment, bitter gourd seeds were sowed either without treatment or with hydropriming, 0.01%, 0.02%, 0.03%, 0.04%, and 0.05% chitosan, respectively, under 50mM soil salinity under the climatic conditions of Lahore. This research was designed to find the role of chitosan in inducing salt stress tolerance in bitter gourd plants and also find the best chitosan dose that is useful for higher salinity conditions. Different attributes of bitter gourd were recorded. Results revealed that chitosan application at 0.04% is best for enhancing the salt stress tolerance potential of bitter gourd. Different morphological attributes, physiological attributes, water relation attributes, and biochemical parameters were also recorded. It was observed that pre-sowing treatments with an optimized dose of 0.04% chitosan exhibited significant effects on all the bitter gourd plants and improved the germination rate by improving the salt stress tolerance potential of plants under high salinity.

Conclusion: It can be concluded from the present research that the optimized dose of 0.04% chitosan has also proved effective in the enzymatic activity of bitter gourd by enhancing the salt stress potential under increasing salt stress.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Plant Science
Frontiers in Plant Science PLANT SCIENCES-
CiteScore
7.30
自引率
14.30%
发文量
4844
审稿时长
14 weeks
期刊介绍: In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches. Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.
期刊最新文献
Herbicide resistance in Leptochloa chinensis (L.) Nees populations from different regions of Jiangsu Province, China: sensitivity differences and underlying mechanisms. Protective mechanisms of exogenous melatonin on chlorophyll metabolism and photosynthesis in tomato seedlings under heat stress. Identification and management of a novel Danshen leaf anthracnose caused by Colletotrichum karstii in Salvia miltiorrhiza Bunge in China. Tetramycin ameliorates tebuconazole·azoxystrobin to control leaf spot and viral diseases of Taizishen. Unveiling the nutraceutical potential of indigenous and exotic eggplant for bioactive compounds and antioxidant activity as well as its suitability to the nutraceutical industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1