{"title":"Biomechanical analysis of axial-radial integrated functional gradient material implants in healthy and osteoporotic bones.","authors":"Yanzhao Ma, Zhexuan Yang, Boshen Yu, Kun Lyu, Jian Wu, Baohua Chen, Kena Ma, Yiqun Hu, Dong Chen","doi":"10.4012/dmj.2024-222","DOIUrl":null,"url":null,"abstract":"<p><p>People with osteoporosis, common among middle-aged and elderly individuals, often need dental implants. Titanium implants, though generally safe, can cause problems due to their stiffness, especially in osteoporotic bone, leading to fractures. This study aims to identify gradient types that offer improved biological adaptation. This was achieved by comparing the mechanical properties of four new two-dimensional functional gradient materials (FGMs) implants to those of conventional and one-dimensional FGM implants in healthy and osteoporotic bone models. The new FGM implants, with reduced stiffness at the bottom and outer parts, kept strain on cancellous bone within safe limits, reducing fracture risk. Notably, the FGM RA L-H implant maintained strain levels within the optimal range (1,500-3,000 µɛ), promoting bone healing and remodeling. By evaluating the stresses and strains, it was concluded that the FGM RA L-H implant is well adapted to significantly reduce stresses and improve bone recovery in healthy and osteoporotic bones.</p>","PeriodicalId":11065,"journal":{"name":"Dental materials journal","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dental materials journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4012/dmj.2024-222","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
People with osteoporosis, common among middle-aged and elderly individuals, often need dental implants. Titanium implants, though generally safe, can cause problems due to their stiffness, especially in osteoporotic bone, leading to fractures. This study aims to identify gradient types that offer improved biological adaptation. This was achieved by comparing the mechanical properties of four new two-dimensional functional gradient materials (FGMs) implants to those of conventional and one-dimensional FGM implants in healthy and osteoporotic bone models. The new FGM implants, with reduced stiffness at the bottom and outer parts, kept strain on cancellous bone within safe limits, reducing fracture risk. Notably, the FGM RA L-H implant maintained strain levels within the optimal range (1,500-3,000 µɛ), promoting bone healing and remodeling. By evaluating the stresses and strains, it was concluded that the FGM RA L-H implant is well adapted to significantly reduce stresses and improve bone recovery in healthy and osteoporotic bones.
期刊介绍:
Dental Materials Journal is a peer review journal published by the Japanese Society for Dental Materials and Devises aiming to introduce the progress of the basic and applied sciences in dental materials and biomaterials. The dental materials-related clinical science and instrumental technologies are also within the scope of this journal. The materials dealt include synthetic polymers, ceramics, metals and tissue-derived biomaterials. Forefront dental materials and biomaterials used in developing filed, such as tissue engineering, bioengineering and artificial intelligence, are positively considered for the review as well. Recent acceptance rate of the submitted manuscript in the journal is around 30%.