Individualized diagnosis of Parkinson's disease based on multivariate magnetic resonance imaging radiomics and clinical indexes.

IF 4.1 2区 医学 Q2 GERIATRICS & GERONTOLOGY Frontiers in Aging Neuroscience Pub Date : 2025-01-31 eCollection Date: 2025-01-01 DOI:10.3389/fnagi.2025.1504733
Qianqian Ye, Chenhui Lin, Fangyi Xiao, Tao Jiang, Jialong Hou, Yi Zheng, Jiaxue Xu, Jiani Huang, Keke Chen, Jinlai Cai, Jingjing Qian, Weiwei Quan, Yanyan Chen
{"title":"Individualized diagnosis of Parkinson's disease based on multivariate magnetic resonance imaging radiomics and clinical indexes.","authors":"Qianqian Ye, Chenhui Lin, Fangyi Xiao, Tao Jiang, Jialong Hou, Yi Zheng, Jiaxue Xu, Jiani Huang, Keke Chen, Jinlai Cai, Jingjing Qian, Weiwei Quan, Yanyan Chen","doi":"10.3389/fnagi.2025.1504733","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To explore MRI-based radiomics models, integrating clinical characteristics, for differential diagnosis of Parkinson's disease (PD) to evaluate their diagnostic performance.</p><p><strong>Methods: </strong>A total of 256 participants [153 PD, 103 healthy controls (HCs)] from the First Affiliated Hospital of Wenzhou Medical Hospital, were enrolled as the training set, and 120 subjects (74 PD, 46 HCs) from the PPMI dataset served as the test set. Radiomics features were extracted from structural MRI (T1WI and T2-FLair). Support Vector Machine (SVM) classifiers were developed using MRI radiomics data from both monomodal and multimodal radiomics models. The clinical-radiomics model was constructed by integrating clinical variables, including UPDRS, Hoehn-Yahr stage, age, sex, and MMSE scores. Receiver operating characteristic (ROC) curves were generated to evaluate the performance of the models. Decision curve analysis (DCA) was performed to access the clinical usefulness of the models.</p><p><strong>Results: </strong>In the training set, the T2-FLair and T1WI radiomics model achieved an AUC of 0.896 (95% CI, 0.812-0.900) and 0.899 (95% CI, 0.818-0.908), respectively. The double-sequence radiomics model demonstrated superior diagnostic performance, with an AUC of 0.965 (95% CI, 0.885-0.978) in the training set and an AUC of 0.852 (95% CI, 0.748-0.910) in the test set. The integrated clinical-radiomics model showed enhanced diagnostic accuracy, with AUC = 0.983 (95% CI, 0.897-0.996) in the training set and AUC = 0.837 (95% CI, 0.786-0.902) in the test set. Rad-scores derived from the radiomics model were significantly correlated with diagnostic outcomes (<i>P</i> < 0.001). DCA confirmed the substantial clinical usefulness of the clinical-radiomics integrated model.</p><p><strong>Conclusion: </strong>The integrated clinical-radiomics model offered superior diagnostic performance compared to models based relying solely on imaging or clinical data, underscoring its potential as a non-invasive and effective tool in routine clinical practice for the early diagnosis of PD.</p>","PeriodicalId":12450,"journal":{"name":"Frontiers in Aging Neuroscience","volume":"17 ","pages":"1504733"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11825468/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Aging Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnagi.2025.1504733","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: To explore MRI-based radiomics models, integrating clinical characteristics, for differential diagnosis of Parkinson's disease (PD) to evaluate their diagnostic performance.

Methods: A total of 256 participants [153 PD, 103 healthy controls (HCs)] from the First Affiliated Hospital of Wenzhou Medical Hospital, were enrolled as the training set, and 120 subjects (74 PD, 46 HCs) from the PPMI dataset served as the test set. Radiomics features were extracted from structural MRI (T1WI and T2-FLair). Support Vector Machine (SVM) classifiers were developed using MRI radiomics data from both monomodal and multimodal radiomics models. The clinical-radiomics model was constructed by integrating clinical variables, including UPDRS, Hoehn-Yahr stage, age, sex, and MMSE scores. Receiver operating characteristic (ROC) curves were generated to evaluate the performance of the models. Decision curve analysis (DCA) was performed to access the clinical usefulness of the models.

Results: In the training set, the T2-FLair and T1WI radiomics model achieved an AUC of 0.896 (95% CI, 0.812-0.900) and 0.899 (95% CI, 0.818-0.908), respectively. The double-sequence radiomics model demonstrated superior diagnostic performance, with an AUC of 0.965 (95% CI, 0.885-0.978) in the training set and an AUC of 0.852 (95% CI, 0.748-0.910) in the test set. The integrated clinical-radiomics model showed enhanced diagnostic accuracy, with AUC = 0.983 (95% CI, 0.897-0.996) in the training set and AUC = 0.837 (95% CI, 0.786-0.902) in the test set. Rad-scores derived from the radiomics model were significantly correlated with diagnostic outcomes (P < 0.001). DCA confirmed the substantial clinical usefulness of the clinical-radiomics integrated model.

Conclusion: The integrated clinical-radiomics model offered superior diagnostic performance compared to models based relying solely on imaging or clinical data, underscoring its potential as a non-invasive and effective tool in routine clinical practice for the early diagnosis of PD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Aging Neuroscience
Frontiers in Aging Neuroscience GERIATRICS & GERONTOLOGY-NEUROSCIENCES
CiteScore
6.30
自引率
8.30%
发文量
1426
期刊介绍: Frontiers in Aging Neuroscience is a leading journal in its field, publishing rigorously peer-reviewed research that advances our understanding of the mechanisms of Central Nervous System aging and age-related neural diseases. Specialty Chief Editor Thomas Wisniewski at the New York University School of Medicine is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
期刊最新文献
Association between hemoglobin glycation index and poor outcome after endovascular thrombectomy in acute ischemic stroke. Auditory steady state response can predict declining EF in healthy elderly individuals. Identification of Parkinson's disease using MRI and genetic data from the PPMI cohort: an improved machine learning fusion approach. Investigating dynamic brain functional redundancy as a mechanism of cognitive reserve. Reduction of orexin-expressing neurons and a unique sleep phenotype in the Tg-SwDI mouse model of Alzheimer's disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1