Identification of IL-34 and Slc7al as potential key regulators in MASLD progression through epigenomic profiling.

IF 3 4区 医学 Q2 GENETICS & HEREDITY Epigenomics Pub Date : 2025-02-16 DOI:10.1080/17501911.2025.2467028
Chuanfei Zeng, Mingliang Wei, Huan Li, Linxin Yu, Chuang Wang, Ziqi Mu, Ziyin Huang, Yujia Ke, Lian-Yun Li, Yong Xiao, Min Wu, Ming-Kai Chen
{"title":"Identification of IL-34 and Slc7al as potential key regulators in MASLD progression through epigenomic profiling.","authors":"Chuanfei Zeng, Mingliang Wei, Huan Li, Linxin Yu, Chuang Wang, Ziqi Mu, Ziyin Huang, Yujia Ke, Lian-Yun Li, Yong Xiao, Min Wu, Ming-Kai Chen","doi":"10.1080/17501911.2025.2467028","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Epigenetic alterations are critical regulators in the progression of metabolic dysfunction-associated steatotic liver disease (MASLD); however, the dynamic epigenomic landscapes are not well defined. Our previous study found that H3K27ac and H3K9me3 play important roles in regulating lipid metabolic pathways in the early stages of MASLD. However, the epigenomic status in the inflammation stages still needs to be determined.</p><p><strong>Method: </strong>C57BL/6 male mice were fed with the methionine- and choline-deficient (MCD) or normal diet, and their serum and liver samples were collected after 6 weeks. Serum alanine aminotransferase (ALT), aspartate amino transferase (AST), total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) levels were measured. Chromatin immunoprecipitation sequencing (ChIP-Seq) for H3K27ac and H3K9me3 was performed together with RNA sequencing (RNA-seq) and key regulators were analyzed.</p><p><strong>Results: </strong>The target genes of enhancers with increased H3K27ac and decreased H3K9me3 signals are enriched in lipid metabolism and immuno-inflammatory pathways. <i>Il-34</i> and <i>Slc7al</i> are identified as potential regulators in MASLD.</p><p><strong>Conclusion: </strong>Our study reveals that active enhancers and heterochromatin associated with metabolic and inflammatory genes are extensively reprogrammed in MCD-diet mice, and <i>Il-34</i> and <i>Slc7al</i> are potentially key genes regulating the progression of MASLD.</p>","PeriodicalId":11959,"journal":{"name":"Epigenomics","volume":" ","pages":"1-15"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17501911.2025.2467028","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Epigenetic alterations are critical regulators in the progression of metabolic dysfunction-associated steatotic liver disease (MASLD); however, the dynamic epigenomic landscapes are not well defined. Our previous study found that H3K27ac and H3K9me3 play important roles in regulating lipid metabolic pathways in the early stages of MASLD. However, the epigenomic status in the inflammation stages still needs to be determined.

Method: C57BL/6 male mice were fed with the methionine- and choline-deficient (MCD) or normal diet, and their serum and liver samples were collected after 6 weeks. Serum alanine aminotransferase (ALT), aspartate amino transferase (AST), total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) levels were measured. Chromatin immunoprecipitation sequencing (ChIP-Seq) for H3K27ac and H3K9me3 was performed together with RNA sequencing (RNA-seq) and key regulators were analyzed.

Results: The target genes of enhancers with increased H3K27ac and decreased H3K9me3 signals are enriched in lipid metabolism and immuno-inflammatory pathways. Il-34 and Slc7al are identified as potential regulators in MASLD.

Conclusion: Our study reveals that active enhancers and heterochromatin associated with metabolic and inflammatory genes are extensively reprogrammed in MCD-diet mice, and Il-34 and Slc7al are potentially key genes regulating the progression of MASLD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
目的:表观遗传学改变是代谢功能障碍相关性脂肪性肝病(MASLD)进展过程中的关键调控因子;然而,动态表观基因组景观尚未得到很好的界定。我们之前的研究发现,H3K27ac 和 H3K9me3 在调节 MASLD 早期阶段的脂质代谢通路中发挥着重要作用。然而,炎症阶段的表观基因组状况仍有待确定:方法:用蛋氨酸和胆碱缺乏(MCD)或正常饮食喂养C57BL/6雄性小鼠,6周后采集其血清和肝脏样本。测定血清丙氨酸氨基转移酶(ALT)、天冬氨酸氨基转移酶(AST)、总胆固醇(TC)、甘油三酯(TG)、高密度脂蛋白胆固醇(HDL-C)和低密度脂蛋白胆固醇(LDL-C)水平。在进行染色质免疫沉淀测序(ChIP-Seq)检测 H3K27ac 和 H3K9me3 的同时,还进行了 RNA 测序(RNA-seq),并对关键调控因子进行了分析:结果:H3K27ac信号增加、H3K9me3信号减少的增强子的靶基因富集在脂质代谢和免疫炎症通路中。Il-34和Slc7al被确定为MASLD的潜在调控因子:我们的研究揭示了与代谢和炎症基因相关的活性增强子和异染色质在MCD-diet小鼠中被广泛重编程,Il-34和Slc7al可能是调控MASLD进展的关键基因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Epigenomics
Epigenomics GENETICS & HEREDITY-
CiteScore
5.80
自引率
2.60%
发文量
95
审稿时长
>12 weeks
期刊介绍: Epigenomics provides the forum to address the rapidly progressing research developments in this ever-expanding field; to report on the major challenges ahead and critical advances that are propelling the science forward. The journal delivers this information in concise, at-a-glance article formats – invaluable to a time constrained community. Substantial developments in our current knowledge and understanding of genomics and epigenetics are constantly being made, yet this field is still in its infancy. Epigenomics provides a critical overview of the latest and most significant advances as they unfold and explores their potential application in the clinical setting.
期刊最新文献
Identification of IL-34 and Slc7al as potential key regulators in MASLD progression through epigenomic profiling. Epigenetics in evolution and adaptation to environmental challenges: pathways for disease prevention and treatment. Detection of an intestinal cell DNA methylation signature in blood samples from neonates with necrotizing enterocolitis. Predictive power of epigenetic age - opportunities and cautions. The triple code model for advancing research in rare and undiagnosed diseases beyond the base pairs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1