Weijing Yang, Xin Li, Fei Chang, Xue Qiu, Xulong Huang, Zhan Feng, Jie Yan, Qinghua Wu, Feiyan Wen, Jin Pei, Tao Zhou
{"title":"Low light reduces saffron corm yield by inhibiting starch synthesis.","authors":"Weijing Yang, Xin Li, Fei Chang, Xue Qiu, Xulong Huang, Zhan Feng, Jie Yan, Qinghua Wu, Feiyan Wen, Jin Pei, Tao Zhou","doi":"10.3389/fpls.2025.1544054","DOIUrl":null,"url":null,"abstract":"<p><p>The mechanisms by which low light modulates source-sink dynamics, affecting starch synthesis and formation of underground storage organs in geophyte, remain unclear. In this study, a two-year field experiment was conducted under natural light (NL) and low light (LL, 50% of NL intensity) conditions. LL resulted in a 23.66% and 21.23% reduction in corm yield in 2023 and 2024, respectively. Saffron plants under LL had larger, longer leaves with a higher proportion of dry weight (DW) compared to those under NL. Despite the marked inhibition of photosynthetic capacity, initial DW, sucrose and glucose concentrations in leaves were comparable to those under NL. Carbohydrate analysis revealed that starch concentration in the mother corms under LL decreased by 18.00% relative to NL, while sucrose and glucose concentrations increased by 28.44% and 68.44%, respectively. At the corm expansion stage, sucrose concentration in leaves and daughter corms under LL conditions was 17.32% and 54.08% higher than under NL, but glucose and starch concentrations in daughter corms were 22.08% and 10.22% lower, respectively. Additionally, the activity of invertase (INV), sucrose synthase in the decomposition direction (SUS) and ADP-glucose pyrophosphorylase (AGPase) in daughter corms were reduced under LL. LL also affected phytohormones concentrations, with increased levels of indole-3-acetic acid (IAA) and gibberellin (GA<sub>1</sub>) in LL leaves and daughter corms, and decreased abscisic acid (ABA) levels. Transcriptome and quantitative PCR analyses showed that LL upregulated the expression of genes involved in glycolysis and the tricarboxylic acid cycle in leaves, while downregulating <i>CsSUS</i>, <i>CsINV1</i>, Cs<i>AGPS1</i>, <i>CsZEP</i>, and <i>CsNCED</i>, which are key to sucrose hydrolysis, starch synthesis, and ABA biosynthesis. Exogenous GA<sub>3</sub> application further inhibited SUS, INV and AGPase activities in daughter corms, indicating that high GA concentrations impair carbohydrate metabolism in these organs. In conclusion, LL decreases saffron corm yield by promoting the allocation of reserves from mother corms to leaves at the seedling stage. By the period of the daughter corms enlargement, elevated GA<sub>1</sub> and IAA levels and reduced ABA concentration promote leaf growth while inhibiting carbohydrate metabolism in daughter corms, thereby reducing sucrose transport from leaves to daughter corms and suppressing corm yield formation.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"16 ","pages":"1544054"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11825349/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2025.1544054","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The mechanisms by which low light modulates source-sink dynamics, affecting starch synthesis and formation of underground storage organs in geophyte, remain unclear. In this study, a two-year field experiment was conducted under natural light (NL) and low light (LL, 50% of NL intensity) conditions. LL resulted in a 23.66% and 21.23% reduction in corm yield in 2023 and 2024, respectively. Saffron plants under LL had larger, longer leaves with a higher proportion of dry weight (DW) compared to those under NL. Despite the marked inhibition of photosynthetic capacity, initial DW, sucrose and glucose concentrations in leaves were comparable to those under NL. Carbohydrate analysis revealed that starch concentration in the mother corms under LL decreased by 18.00% relative to NL, while sucrose and glucose concentrations increased by 28.44% and 68.44%, respectively. At the corm expansion stage, sucrose concentration in leaves and daughter corms under LL conditions was 17.32% and 54.08% higher than under NL, but glucose and starch concentrations in daughter corms were 22.08% and 10.22% lower, respectively. Additionally, the activity of invertase (INV), sucrose synthase in the decomposition direction (SUS) and ADP-glucose pyrophosphorylase (AGPase) in daughter corms were reduced under LL. LL also affected phytohormones concentrations, with increased levels of indole-3-acetic acid (IAA) and gibberellin (GA1) in LL leaves and daughter corms, and decreased abscisic acid (ABA) levels. Transcriptome and quantitative PCR analyses showed that LL upregulated the expression of genes involved in glycolysis and the tricarboxylic acid cycle in leaves, while downregulating CsSUS, CsINV1, CsAGPS1, CsZEP, and CsNCED, which are key to sucrose hydrolysis, starch synthesis, and ABA biosynthesis. Exogenous GA3 application further inhibited SUS, INV and AGPase activities in daughter corms, indicating that high GA concentrations impair carbohydrate metabolism in these organs. In conclusion, LL decreases saffron corm yield by promoting the allocation of reserves from mother corms to leaves at the seedling stage. By the period of the daughter corms enlargement, elevated GA1 and IAA levels and reduced ABA concentration promote leaf growth while inhibiting carbohydrate metabolism in daughter corms, thereby reducing sucrose transport from leaves to daughter corms and suppressing corm yield formation.
期刊介绍:
In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches.
Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.