The Cyclin-Dependent Kinase activity modulates the central carbon metabolism in maize during germination.

IF 5.4 2区 生物学 Q1 PLANT SCIENCES Physiologia plantarum Pub Date : 2025-01-01 DOI:10.1111/ppl.70119
Aurora Lara-Núñez, Sara Margarita Garza-Aguilar, José Carlos Páez-Franco, Juan de Dios Galindo-de-la-Rosa, Vanessa Vallejo-Becerra
{"title":"The Cyclin-Dependent Kinase activity modulates the central carbon metabolism in maize during germination.","authors":"Aurora Lara-Núñez, Sara Margarita Garza-Aguilar, José Carlos Páez-Franco, Juan de Dios Galindo-de-la-Rosa, Vanessa Vallejo-Becerra","doi":"10.1111/ppl.70119","DOIUrl":null,"url":null,"abstract":"<p><p>The cell cycle is predominantly controlled by Cyclins/Cyclin-Dependent Kinases (Cyc/CDK) complexes, which phosphorylate targets involved in cellular proliferation. Evidence suggests that Cyc/CDK targets extend beyond traditional proteins and include enzymes that regulate the central carbon metabolism. Maize embryo axes rapidly internalize and metabolize glucose. After 24 h of imbibition in glucose-rich media, axes exhibited increased length and weight, with more pronounced effects at 72 h. This morphology enhancement was impaired when RO-3306, a specific CDK inhibitor, was added. The protein profile of maize embryo extracts at 18 and 24 h indicated altered phosphorylation patterns following CDK activity inhibition. Metabolomic analysis at 24 h of imbibition revealed that maize embryos without sugar in the media, with or without RO-3306, had a decreased sugar and amino acid content. Conversely, axes exposed to glucose demonstrated increased conversion into various mono and di-saccharides such as fructose, mannitol, galactose, and maltose but not sucrose. This pattern was reversed upon the addition of RO-3306. Glucose promoted the accumulation of amino acids such as cysteine, valine, leucine, and intermediates of the tricarboxylic acid (TCA) cycle, such as malate and citrate. The CDK inhibitor redirected the glucose metabolism toward increased serine levels, followed by other amino acids like phenylalanine, valine, and leucine. Additionally, TCA cycle intermediates and sterols significantly decreased. Overall, these results contribute to understanding the role of CDK in maize morphogenesis during germination and underscore its impact on modulating various central carbon pathways, including glycolysis, amino acid catabolism/anabolism, TCA cycle, and sterols biosynthesis.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70119"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11830650/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70119","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The cell cycle is predominantly controlled by Cyclins/Cyclin-Dependent Kinases (Cyc/CDK) complexes, which phosphorylate targets involved in cellular proliferation. Evidence suggests that Cyc/CDK targets extend beyond traditional proteins and include enzymes that regulate the central carbon metabolism. Maize embryo axes rapidly internalize and metabolize glucose. After 24 h of imbibition in glucose-rich media, axes exhibited increased length and weight, with more pronounced effects at 72 h. This morphology enhancement was impaired when RO-3306, a specific CDK inhibitor, was added. The protein profile of maize embryo extracts at 18 and 24 h indicated altered phosphorylation patterns following CDK activity inhibition. Metabolomic analysis at 24 h of imbibition revealed that maize embryos without sugar in the media, with or without RO-3306, had a decreased sugar and amino acid content. Conversely, axes exposed to glucose demonstrated increased conversion into various mono and di-saccharides such as fructose, mannitol, galactose, and maltose but not sucrose. This pattern was reversed upon the addition of RO-3306. Glucose promoted the accumulation of amino acids such as cysteine, valine, leucine, and intermediates of the tricarboxylic acid (TCA) cycle, such as malate and citrate. The CDK inhibitor redirected the glucose metabolism toward increased serine levels, followed by other amino acids like phenylalanine, valine, and leucine. Additionally, TCA cycle intermediates and sterols significantly decreased. Overall, these results contribute to understanding the role of CDK in maize morphogenesis during germination and underscore its impact on modulating various central carbon pathways, including glycolysis, amino acid catabolism/anabolism, TCA cycle, and sterols biosynthesis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physiologia plantarum
Physiologia plantarum 生物-植物科学
CiteScore
11.00
自引率
3.10%
发文量
224
审稿时长
3.9 months
期刊介绍: Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.
期刊最新文献
Blue or far-red light supplementation induced pre-hardening in the leaves of the Rht12 wheat dwarfing line: hormonal changes and freezing tolerance. Correction to "Impact of water stress to plant epigenetic mechanisms in stress and adaptation". Improved photorespiration has a major impact on the root metabolome of Arabidopsis. Silicon modulates nitrogen and secondary metabolism in Glycyrrhiza uralensis under drought and salt stress conditions. Functional identification of PmABCGs in floral scent transport of Prunus mume.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1