Is synthetic data generation effective in maintaining clinical biomarkers? Investigating diffusion models across diverse imaging modalities.

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Frontiers in Artificial Intelligence Pub Date : 2025-01-31 eCollection Date: 2024-01-01 DOI:10.3389/frai.2024.1454441
Abdullah Hosseini, Ahmed Serag
{"title":"Is synthetic data generation effective in maintaining clinical biomarkers? Investigating diffusion models across diverse imaging modalities.","authors":"Abdullah Hosseini, Ahmed Serag","doi":"10.3389/frai.2024.1454441","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The integration of recent technologies in medical imaging has become a cornerstone of modern healthcare, facilitating detailed analysis of internal anatomy and pathology. Traditional methods, however, often grapple with data-sharing restrictions due to privacy concerns. Emerging techniques in artificial intelligence offer innovative solutions to overcome these constraints, with synthetic data generation enabling the creation of realistic medical imaging datasets, but the preservation of critical hidden medical biomarkers is an open question.</p><p><strong>Methods: </strong>This study employs state-of-the-art Denoising Diffusion Probabilistic Models integrated with a Swin-transformer-based network to generate synthetic medical data. Three distinct areas of medical imaging - radiology, ophthalmology, and histopathology - are explored. The quality of synthetic images is evaluated through a classifier trained to identify the preservation of medical biomarkers.</p><p><strong>Results: </strong>The diffusion model effectively preserves key medical features, such as lung markings and retinal abnormalities, producing synthetic images closely resembling real data. Classifier performance demonstrates the reliability of synthetic data for downstream tasks, with F1 and AUC reaching 0.8-0.99.</p><p><strong>Discussion: </strong>This work provides valuable insights into the potential of diffusion-based models for generating realistic, biomarker-preserving synthetic images across various medical imaging modalities. These findings highlight the potential of synthetic data to address challenges such as data scarcity and privacy concerns in clinical practice, research, and education.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1454441"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11826350/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1454441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: The integration of recent technologies in medical imaging has become a cornerstone of modern healthcare, facilitating detailed analysis of internal anatomy and pathology. Traditional methods, however, often grapple with data-sharing restrictions due to privacy concerns. Emerging techniques in artificial intelligence offer innovative solutions to overcome these constraints, with synthetic data generation enabling the creation of realistic medical imaging datasets, but the preservation of critical hidden medical biomarkers is an open question.

Methods: This study employs state-of-the-art Denoising Diffusion Probabilistic Models integrated with a Swin-transformer-based network to generate synthetic medical data. Three distinct areas of medical imaging - radiology, ophthalmology, and histopathology - are explored. The quality of synthetic images is evaluated through a classifier trained to identify the preservation of medical biomarkers.

Results: The diffusion model effectively preserves key medical features, such as lung markings and retinal abnormalities, producing synthetic images closely resembling real data. Classifier performance demonstrates the reliability of synthetic data for downstream tasks, with F1 and AUC reaching 0.8-0.99.

Discussion: This work provides valuable insights into the potential of diffusion-based models for generating realistic, biomarker-preserving synthetic images across various medical imaging modalities. These findings highlight the potential of synthetic data to address challenges such as data scarcity and privacy concerns in clinical practice, research, and education.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
期刊最新文献
Explainable correlation-based anomaly detection for Industrial Control Systems. Factors influencing trust in algorithmic decision-making: an indirect scenario-based experiment. Role of artificial intelligence in smart grid - a mini review. Strategic technological innovation through ChatMu: transforming information accessibility in Muhammadiyah. Deep learning and explainable AI for classification of potato leaf diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1