Factors influencing trust in algorithmic decision-making: an indirect scenario-based experiment.

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Frontiers in Artificial Intelligence Pub Date : 2025-02-04 eCollection Date: 2024-01-01 DOI:10.3389/frai.2024.1465605
Fernando Marmolejo-Ramos, Rebecca Marrone, Malgorzata Korolkiewicz, Florence Gabriel, George Siemens, Srecko Joksimovic, Yuki Yamada, Yuki Mori, Talal Rahwan, Maria Sahakyan, Belona Sonna, Assylbek Meirmanov, Aidos Bolatov, Bidisha Som, Izuchukwu Ndukaihe, Nwadiogo C Arinze, Josef Kundrát, Lenka Skanderová, Van-Giang Ngo, Giang Nguyen, Michelle Lacia, Chun-Chia Kung, Meiselina Irmayanti, Abdul Muktadir, Fransiska Timoria Samosir, Marco Tullio Liuzza, Roberto Giorgini, Omid Khatin-Zadeh, Hassan Banaruee, Asil Ali Özdoğru, Kris Ariyabuddhiphongs, Wachirawit Rakchai, Natalia Trujillo, Stella Maris Valencia, Armina Janyan, Kiril Kostov, Pedro R Montoro, Jose Hinojosa, Kelsey Medeiros, Thomas E Hunt, Julian Posada, Raquel Meister Ko Freitag, Julian Tejada
{"title":"Factors influencing trust in algorithmic decision-making: an indirect scenario-based experiment.","authors":"Fernando Marmolejo-Ramos, Rebecca Marrone, Malgorzata Korolkiewicz, Florence Gabriel, George Siemens, Srecko Joksimovic, Yuki Yamada, Yuki Mori, Talal Rahwan, Maria Sahakyan, Belona Sonna, Assylbek Meirmanov, Aidos Bolatov, Bidisha Som, Izuchukwu Ndukaihe, Nwadiogo C Arinze, Josef Kundrát, Lenka Skanderová, Van-Giang Ngo, Giang Nguyen, Michelle Lacia, Chun-Chia Kung, Meiselina Irmayanti, Abdul Muktadir, Fransiska Timoria Samosir, Marco Tullio Liuzza, Roberto Giorgini, Omid Khatin-Zadeh, Hassan Banaruee, Asil Ali Özdoğru, Kris Ariyabuddhiphongs, Wachirawit Rakchai, Natalia Trujillo, Stella Maris Valencia, Armina Janyan, Kiril Kostov, Pedro R Montoro, Jose Hinojosa, Kelsey Medeiros, Thomas E Hunt, Julian Posada, Raquel Meister Ko Freitag, Julian Tejada","doi":"10.3389/frai.2024.1465605","DOIUrl":null,"url":null,"abstract":"<p><p>Algorithms are involved in decisions ranging from trivial to significant, but people often express distrust toward them. Research suggests that educational efforts to explain how algorithms work may help mitigate this distrust. In a study of 1,921 participants from 20 countries, we examined differences in algorithmic trust for low-stakes and high-stakes decisions. Our results suggest that statistical literacy is negatively associated with trust in algorithms for high-stakes situations, while it is positively associated with trust in low-stakes scenarios with high algorithm familiarity. However, explainability did not appear to influence trust in algorithms. We conclude that having statistical literacy enables individuals to critically evaluate the decisions made by algorithms, data and AI, and consider them alongside other factors before making significant life decisions. This ensures that individuals are not solely relying on algorithms that may not fully capture the complexity and nuances of human behavior and decision-making. Therefore, policymakers should consider promoting statistical/AI literacy to address some of the complexities associated with trust in algorithms. This work paves the way for further research, including the triangulation of data with direct observations of user interactions with algorithms or physiological measures to assess trust more accurately.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1465605"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11832472/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1465605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Algorithms are involved in decisions ranging from trivial to significant, but people often express distrust toward them. Research suggests that educational efforts to explain how algorithms work may help mitigate this distrust. In a study of 1,921 participants from 20 countries, we examined differences in algorithmic trust for low-stakes and high-stakes decisions. Our results suggest that statistical literacy is negatively associated with trust in algorithms for high-stakes situations, while it is positively associated with trust in low-stakes scenarios with high algorithm familiarity. However, explainability did not appear to influence trust in algorithms. We conclude that having statistical literacy enables individuals to critically evaluate the decisions made by algorithms, data and AI, and consider them alongside other factors before making significant life decisions. This ensures that individuals are not solely relying on algorithms that may not fully capture the complexity and nuances of human behavior and decision-making. Therefore, policymakers should consider promoting statistical/AI literacy to address some of the complexities associated with trust in algorithms. This work paves the way for further research, including the triangulation of data with direct observations of user interactions with algorithms or physiological measures to assess trust more accurately.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
期刊最新文献
Explainable correlation-based anomaly detection for Industrial Control Systems. Factors influencing trust in algorithmic decision-making: an indirect scenario-based experiment. Role of artificial intelligence in smart grid - a mini review. Strategic technological innovation through ChatMu: transforming information accessibility in Muhammadiyah. Deep learning and explainable AI for classification of potato leaf diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1