The brine shrimp Artemia franciscana as a model for astrobiological studies: Physiological adaptations to Mars-like atmospheric pressure conditions

IF 2.1 3区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology Pub Date : 2025-02-14 DOI:10.1016/j.cbpa.2025.111825
Maria Teresa Muscari Tomajoli , Paola Di Donato , Vincenzo Della Corte , Giovanni Covone , Gianluca Fasciolo , Eugenio Geremia , Adriana Petito , Luca Tonietti , Laura Inno , Alessandra Rotundi , Paola Venditti , Gaetana Napolitano
{"title":"The brine shrimp Artemia franciscana as a model for astrobiological studies: Physiological adaptations to Mars-like atmospheric pressure conditions","authors":"Maria Teresa Muscari Tomajoli ,&nbsp;Paola Di Donato ,&nbsp;Vincenzo Della Corte ,&nbsp;Giovanni Covone ,&nbsp;Gianluca Fasciolo ,&nbsp;Eugenio Geremia ,&nbsp;Adriana Petito ,&nbsp;Luca Tonietti ,&nbsp;Laura Inno ,&nbsp;Alessandra Rotundi ,&nbsp;Paola Venditti ,&nbsp;Gaetana Napolitano","doi":"10.1016/j.cbpa.2025.111825","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the adaptation mechanisms of extremophiles to extreme environments is fundamental to predicting organisms' capacity to survive in space and plan future space exploration missions. This study explores the physiological and metabolic adaptations of nauplii of a eukaryotic organism, <em>Artemia franciscana</em>, hatched from cysts exposed to Mars-like pressure conditions (6 mbar) by analyzing aerobic and anaerobic metabolism, mitochondrial function, and oxidative stress in nauplii. Mars-like pressure did not inhibit nauplii's hatching or <em>in vivo</em> respiration, indicating that the fundamental metabolic functions are preserved but affected cellular metabolism. The lower lactate levels suggested reduced anaerobic metabolism, and the reduction in the activity of Complex I of the electron transport chain, resulting in reduced <em>in vitro</em> respiration supported by pyruvate plus malate, suggested an effect on aerobic metabolism. However, the succinate-supported respiration remained stable according to unchanged Complex II activity. Changes in aerobic metabolism could affect Reactive Oxygen Species (ROS) production and management. We did not observe changes in ROS levels according to the unchanged activity of NADPH oxidase, a source of ROS in the early development stages of nauplii. A total antioxidant capacity reduction and increased susceptibility to oxidants were observed despite this. However, lipid and protein oxidative stress markers levels remained unchanged, likely due to the increased activity of antioxidant enzymes. Our results underscore the resilience of the cysts to Mars-like pressure conditions, indicating the potential of <em>Artemia franciscana</em> as a model organism in astrobiological research, opening new avenues for exploration in astrobiology.</div></div>","PeriodicalId":55237,"journal":{"name":"Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology","volume":"303 ","pages":"Article 111825"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1095643325000236","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the adaptation mechanisms of extremophiles to extreme environments is fundamental to predicting organisms' capacity to survive in space and plan future space exploration missions. This study explores the physiological and metabolic adaptations of nauplii of a eukaryotic organism, Artemia franciscana, hatched from cysts exposed to Mars-like pressure conditions (6 mbar) by analyzing aerobic and anaerobic metabolism, mitochondrial function, and oxidative stress in nauplii. Mars-like pressure did not inhibit nauplii's hatching or in vivo respiration, indicating that the fundamental metabolic functions are preserved but affected cellular metabolism. The lower lactate levels suggested reduced anaerobic metabolism, and the reduction in the activity of Complex I of the electron transport chain, resulting in reduced in vitro respiration supported by pyruvate plus malate, suggested an effect on aerobic metabolism. However, the succinate-supported respiration remained stable according to unchanged Complex II activity. Changes in aerobic metabolism could affect Reactive Oxygen Species (ROS) production and management. We did not observe changes in ROS levels according to the unchanged activity of NADPH oxidase, a source of ROS in the early development stages of nauplii. A total antioxidant capacity reduction and increased susceptibility to oxidants were observed despite this. However, lipid and protein oxidative stress markers levels remained unchanged, likely due to the increased activity of antioxidant enzymes. Our results underscore the resilience of the cysts to Mars-like pressure conditions, indicating the potential of Artemia franciscana as a model organism in astrobiological research, opening new avenues for exploration in astrobiology.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.00
自引率
4.30%
发文量
155
审稿时长
3 months
期刊介绍: Part A: Molecular & Integrative Physiology of Comparative Biochemistry and Physiology. This journal covers molecular, cellular, integrative, and ecological physiology. Topics include bioenergetics, circulation, development, excretion, ion regulation, endocrinology, neurobiology, nutrition, respiration, and thermal biology. Study on regulatory mechanisms at any level of organization such as signal transduction and cellular interaction and control of behavior are also published.
期刊最新文献
The brine shrimp Artemia franciscana as a model for astrobiological studies: Physiological adaptations to Mars-like atmospheric pressure conditions Melatonin modulates autophagy, mitochondria and antioxidant in the liver and brain of Perccottus glenni during recovery from freezing Contrasting the effects of immobilisation and anaesthesia on the stress physiology and behaviour of juvenile lake sturgeon (Acipenser fulvescens) Molecular characterization and function of sodium-dependent glucose transporter 1 in postprandial glucose homeostasis in Macrobrachium rosenbergii A circadian clock controls the daily function of the intestine in rainbow trout. Influence of light and food as synchronizers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1