H E Ling, Yang Hui, L I Kang, Wang Junwen, Sun Zhibo, Yang Jinsheng, Zhang Jing
{"title":"Research on acupuncture robots based on the OptiTrack motion capture system and a robotic arm.","authors":"H E Ling, Yang Hui, L I Kang, Wang Junwen, Sun Zhibo, Yang Jinsheng, Zhang Jing","doi":"10.19852/j.cnki.jtcm.2025.01.020","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To propose an automatic acupuncture robot system for performing acupuncture operations.</p><p><strong>Methods: </strong>The acupuncture robot system consists of three components: automatic acupoint localization, acupuncture manipulations, and <i>De Qi</i> sensation detection. The OptiTrack motion capture system is used to locate acupoints, which are then translated into coordinates in the robot control system. A flexible collaborative robot with an intelligent gripper is then used to perform acupuncture manipulations with high precision. In addition, a <i>De Qi</i> sensation detection system is proposed to evaluate the effect of acupuncture. To verify the stability of the designed acupuncture robot, acupoints' coordinates localized by the acupuncture robot are compared with the Gold Standard labeled by a professional acupuncturist using significant level tests.</p><p><strong>Results: </strong>Through repeated experiments for eight acupoints, the acupuncture robot achieved a positioning error within 3.3 mm, which is within the allowable range of needle extraction and acupoint insertion. During needle insertion, the robot arm followed the prescribed trajectory with a mean deviation distance of 0.02 mm and a deviation angle of less than 0.15°. The results of the lifting thrusting operation in the Xingzhen process show that the mean acupuncture depth error of the designed acupuncture robot is approximately 2 mm, which is within the recommended depth range for the Xingzhen operation. In addition, the average detection accuracy of the <i>De Qi</i> keywords is 94.52%, which meets the requirements of acupuncture effect testing for different dialects.</p><p><strong>Conclusion: </strong>The proposed acupuncture robot system streamlines the acupuncture process, increases efficiency, and reduces practitioner fatigue, while also allowing for the quantification of acupuncture manipulations and evaluation of therapeutic effects. The development of an acupuncture robot system has the potential to revolutionize low back pain treatment and improve patient outcomes.</p>","PeriodicalId":94119,"journal":{"name":"Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan","volume":"45 1","pages":"201-212"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764947/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19852/j.cnki.jtcm.2025.01.020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To propose an automatic acupuncture robot system for performing acupuncture operations.
Methods: The acupuncture robot system consists of three components: automatic acupoint localization, acupuncture manipulations, and De Qi sensation detection. The OptiTrack motion capture system is used to locate acupoints, which are then translated into coordinates in the robot control system. A flexible collaborative robot with an intelligent gripper is then used to perform acupuncture manipulations with high precision. In addition, a De Qi sensation detection system is proposed to evaluate the effect of acupuncture. To verify the stability of the designed acupuncture robot, acupoints' coordinates localized by the acupuncture robot are compared with the Gold Standard labeled by a professional acupuncturist using significant level tests.
Results: Through repeated experiments for eight acupoints, the acupuncture robot achieved a positioning error within 3.3 mm, which is within the allowable range of needle extraction and acupoint insertion. During needle insertion, the robot arm followed the prescribed trajectory with a mean deviation distance of 0.02 mm and a deviation angle of less than 0.15°. The results of the lifting thrusting operation in the Xingzhen process show that the mean acupuncture depth error of the designed acupuncture robot is approximately 2 mm, which is within the recommended depth range for the Xingzhen operation. In addition, the average detection accuracy of the De Qi keywords is 94.52%, which meets the requirements of acupuncture effect testing for different dialects.
Conclusion: The proposed acupuncture robot system streamlines the acupuncture process, increases efficiency, and reduces practitioner fatigue, while also allowing for the quantification of acupuncture manipulations and evaluation of therapeutic effects. The development of an acupuncture robot system has the potential to revolutionize low back pain treatment and improve patient outcomes.