Research on acupuncture robots based on the OptiTrack motion capture system and a robotic arm.

H E Ling, Yang Hui, L I Kang, Wang Junwen, Sun Zhibo, Yang Jinsheng, Zhang Jing
{"title":"Research on acupuncture robots based on the OptiTrack motion capture system and a robotic arm.","authors":"H E Ling, Yang Hui, L I Kang, Wang Junwen, Sun Zhibo, Yang Jinsheng, Zhang Jing","doi":"10.19852/j.cnki.jtcm.2025.01.020","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To propose an automatic acupuncture robot system for performing acupuncture operations.</p><p><strong>Methods: </strong>The acupuncture robot system consists of three components: automatic acupoint localization, acupuncture manipulations, and <i>De Qi</i> sensation detection. The OptiTrack motion capture system is used to locate acupoints, which are then translated into coordinates in the robot control system. A flexible collaborative robot with an intelligent gripper is then used to perform acupuncture manipulations with high precision. In addition, a <i>De Qi</i> sensation detection system is proposed to evaluate the effect of acupuncture. To verify the stability of the designed acupuncture robot, acupoints' coordinates localized by the acupuncture robot are compared with the Gold Standard labeled by a professional acupuncturist using significant level tests.</p><p><strong>Results: </strong>Through repeated experiments for eight acupoints, the acupuncture robot achieved a positioning error within 3.3 mm, which is within the allowable range of needle extraction and acupoint insertion. During needle insertion, the robot arm followed the prescribed trajectory with a mean deviation distance of 0.02 mm and a deviation angle of less than 0.15°. The results of the lifting thrusting operation in the Xingzhen process show that the mean acupuncture depth error of the designed acupuncture robot is approximately 2 mm, which is within the recommended depth range for the Xingzhen operation. In addition, the average detection accuracy of the <i>De Qi</i> keywords is 94.52%, which meets the requirements of acupuncture effect testing for different dialects.</p><p><strong>Conclusion: </strong>The proposed acupuncture robot system streamlines the acupuncture process, increases efficiency, and reduces practitioner fatigue, while also allowing for the quantification of acupuncture manipulations and evaluation of therapeutic effects. The development of an acupuncture robot system has the potential to revolutionize low back pain treatment and improve patient outcomes.</p>","PeriodicalId":94119,"journal":{"name":"Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan","volume":"45 1","pages":"201-212"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764947/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19852/j.cnki.jtcm.2025.01.020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: To propose an automatic acupuncture robot system for performing acupuncture operations.

Methods: The acupuncture robot system consists of three components: automatic acupoint localization, acupuncture manipulations, and De Qi sensation detection. The OptiTrack motion capture system is used to locate acupoints, which are then translated into coordinates in the robot control system. A flexible collaborative robot with an intelligent gripper is then used to perform acupuncture manipulations with high precision. In addition, a De Qi sensation detection system is proposed to evaluate the effect of acupuncture. To verify the stability of the designed acupuncture robot, acupoints' coordinates localized by the acupuncture robot are compared with the Gold Standard labeled by a professional acupuncturist using significant level tests.

Results: Through repeated experiments for eight acupoints, the acupuncture robot achieved a positioning error within 3.3 mm, which is within the allowable range of needle extraction and acupoint insertion. During needle insertion, the robot arm followed the prescribed trajectory with a mean deviation distance of 0.02 mm and a deviation angle of less than 0.15°. The results of the lifting thrusting operation in the Xingzhen process show that the mean acupuncture depth error of the designed acupuncture robot is approximately 2 mm, which is within the recommended depth range for the Xingzhen operation. In addition, the average detection accuracy of the De Qi keywords is 94.52%, which meets the requirements of acupuncture effect testing for different dialects.

Conclusion: The proposed acupuncture robot system streamlines the acupuncture process, increases efficiency, and reduces practitioner fatigue, while also allowing for the quantification of acupuncture manipulations and evaluation of therapeutic effects. The development of an acupuncture robot system has the potential to revolutionize low back pain treatment and improve patient outcomes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research and development of the pulse acquisition system and the pulse biomimetic reproduction system. Study on the diagnostic criteria of syndrome of dampness obstruction in idiopathic membranous nephropathy based on expert consensus. Research on acupuncture robots based on the OptiTrack motion capture system and a robotic arm. Screening optimal target populations with symptomatic bradyarrhythmia for pharmacotherapy: a discriminant analysis pilot study. Yunpiqiangshen gel improves quality of life in dialysis patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1