Cierra Paaaina-Daquioag, Disha Byadarahalli Mohan Kumar, Debra R Kerr, Leonardo Romero, Kurt M Regner
{"title":"Antibiotic production by soil bacteria under aerobic and micro-oxic conditions.","authors":"Cierra Paaaina-Daquioag, Disha Byadarahalli Mohan Kumar, Debra R Kerr, Leonardo Romero, Kurt M Regner","doi":"10.17912/micropub.biology.001440","DOIUrl":null,"url":null,"abstract":"<p><p>Antimicrobial resistance presents a significant global challenge, undermining the effectiveness of antibiotic therapies and complicating disease management. The origin and spread of antibiotic-resistance genes outpaces the antibiotic discovery process, highlighting an urgent need for new approaches. This study investigated the production of antibiotics by soil bacteria under aerobic and micro-oxic conditions as part of a course-based research experience designed to introduce undergraduates to the global antibiotic resistance crisis. Significant differences in the diameters of the zones of inhibition against three tester strains were observed under differing oxygen concentrations. Soil isolates were identified with 16S rRNA sequence analysis.</p>","PeriodicalId":74192,"journal":{"name":"microPublication biology","volume":"2025 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11829214/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"microPublication biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17912/micropub.biology.001440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Antimicrobial resistance presents a significant global challenge, undermining the effectiveness of antibiotic therapies and complicating disease management. The origin and spread of antibiotic-resistance genes outpaces the antibiotic discovery process, highlighting an urgent need for new approaches. This study investigated the production of antibiotics by soil bacteria under aerobic and micro-oxic conditions as part of a course-based research experience designed to introduce undergraduates to the global antibiotic resistance crisis. Significant differences in the diameters of the zones of inhibition against three tester strains were observed under differing oxygen concentrations. Soil isolates were identified with 16S rRNA sequence analysis.