Julian Bösel, Rohan Mathur, Lin Cheng, Marianna S Varelas, Markus A Hobert, José I Suarez
{"title":"AI and Neurology.","authors":"Julian Bösel, Rohan Mathur, Lin Cheng, Marianna S Varelas, Markus A Hobert, José I Suarez","doi":"10.1186/s42466-025-00367-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Artificial Intelligence is influencing medicine on all levels. Neurology, one of the most complex and progressive medical disciplines, is no exception. No longer limited to neuroimaging, where data-driven approaches were initiated, machine and deep learning methodologies are taking neurologic diagnostics, prognostication, predictions, decision making and even therapy to very promising potentials.</p><p><strong>Main body: </strong>In this review, the basic principles of different types of Artificial Intelligence and the options to apply them to neurology are summarized. Examples of noteworthy studies on such applications are presented from the fields of acute and intensive care neurology, stroke, epilepsy, and movement disorders. Finally, these potentials are matched with risks and challenges jeopardizing ethics, safety and equality, that need to be heeded by neurologists welcoming Artificial Intelligence to their field of expertise.</p><p><strong>Conclusion: </strong>Artificial intelligence is and will be changing neurology. Studies need to be taken to the prospective level and algorithms undergo federated learning to reach generalizability. Neurologists need to master not only the benefits but also the risks in safety, ethics and equity of such data-driven form of medicine.</p>","PeriodicalId":94156,"journal":{"name":"Neurological research and practice","volume":"7 1","pages":"11"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurological research and practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42466-025-00367-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Artificial Intelligence is influencing medicine on all levels. Neurology, one of the most complex and progressive medical disciplines, is no exception. No longer limited to neuroimaging, where data-driven approaches were initiated, machine and deep learning methodologies are taking neurologic diagnostics, prognostication, predictions, decision making and even therapy to very promising potentials.
Main body: In this review, the basic principles of different types of Artificial Intelligence and the options to apply them to neurology are summarized. Examples of noteworthy studies on such applications are presented from the fields of acute and intensive care neurology, stroke, epilepsy, and movement disorders. Finally, these potentials are matched with risks and challenges jeopardizing ethics, safety and equality, that need to be heeded by neurologists welcoming Artificial Intelligence to their field of expertise.
Conclusion: Artificial intelligence is and will be changing neurology. Studies need to be taken to the prospective level and algorithms undergo federated learning to reach generalizability. Neurologists need to master not only the benefits but also the risks in safety, ethics and equity of such data-driven form of medicine.