The Role of Mitochondrial Dysfunction and Calcium Dysregulation in 2C-I and 25I-NBOMe-Induced Neurotoxicity.

Eva Gil-Martins, Fernando Cagide, Ana Borer, Daniel José Barbosa, Carlos Fernandes, Daniel Chavarria, Fernando Remião, Fernanda Borges, Renata Silva
{"title":"The Role of Mitochondrial Dysfunction and Calcium Dysregulation in 2C-I and 25I-NBOMe-Induced Neurotoxicity.","authors":"Eva Gil-Martins, Fernando Cagide, Ana Borer, Daniel José Barbosa, Carlos Fernandes, Daniel Chavarria, Fernando Remião, Fernanda Borges, Renata Silva","doi":"10.1016/j.cbi.2025.111425","DOIUrl":null,"url":null,"abstract":"<p><p>New psychoactive substances (NPS) are designed to evade legal regulation while mimicking the effects of classic illicit drugs such as 3,4-methylenedioxymethamphetamine (MDMA). This category includes phenethylamine derivatives, such as the psychedelic 2C and NBOMe drugs. Given the lack of data regarding the toxicological profile of these substances, the goal of this study was to evaluate the neurotoxicity of 2C-I and 25I-NBOMe and explore their neurotoxic pathways. Lower EC<sub>50</sub> values, in both NR uptake and MTT reduction assays in differentiated SH-SY5Y cells and primary rat cortical cultures, revealed that 25I-NBOMe is significantly more cytotoxic than 2C-I, likely due to its higher lipophilicity. Both drugs triggered severe mitochondrial dysfunction, characterized by decreased intracellular ATP levels and mitochondrial membrane depolarization, although no significant changes in intracellular ROS/RNS levels were observed. Additionally, 25I-NBOMe increased the intracellular Ca<sup>2</sup>⁺ levels. Apoptosis was an observed mechanism of cell death for both drugs, as demonstrated by a significant increase in the number of cells undergoing early apoptosis (AnV<sup>+</sup>/PI<sup>-</sup>) and late apoptosis/necrosis (AnV<sup>+</sup>/PI<sup>+</sup>). However, only 2C-I induced autophagy and strongly triggered caspase-3 activation. This suggests that 2C-I induces caspase-3-dependent apoptosis, whereas 25I-NBOMe may also induce apoptosis through a caspase-3-independent pathway, possibly involving increased intracellular Ca<sup>2</sup>⁺ levels and direct mitochondrial damage. These findings underscore the complex interplay between mitochondrial dysfunction, calcium dysregulation, and cell death pathways, highlighting the central role of mitochondria in the cytotoxicity of 2C-I and 25I-NBOMe.</p>","PeriodicalId":93932,"journal":{"name":"Chemico-biological interactions","volume":" ","pages":"111425"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemico-biological interactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cbi.2025.111425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

New psychoactive substances (NPS) are designed to evade legal regulation while mimicking the effects of classic illicit drugs such as 3,4-methylenedioxymethamphetamine (MDMA). This category includes phenethylamine derivatives, such as the psychedelic 2C and NBOMe drugs. Given the lack of data regarding the toxicological profile of these substances, the goal of this study was to evaluate the neurotoxicity of 2C-I and 25I-NBOMe and explore their neurotoxic pathways. Lower EC50 values, in both NR uptake and MTT reduction assays in differentiated SH-SY5Y cells and primary rat cortical cultures, revealed that 25I-NBOMe is significantly more cytotoxic than 2C-I, likely due to its higher lipophilicity. Both drugs triggered severe mitochondrial dysfunction, characterized by decreased intracellular ATP levels and mitochondrial membrane depolarization, although no significant changes in intracellular ROS/RNS levels were observed. Additionally, 25I-NBOMe increased the intracellular Ca2⁺ levels. Apoptosis was an observed mechanism of cell death for both drugs, as demonstrated by a significant increase in the number of cells undergoing early apoptosis (AnV+/PI-) and late apoptosis/necrosis (AnV+/PI+). However, only 2C-I induced autophagy and strongly triggered caspase-3 activation. This suggests that 2C-I induces caspase-3-dependent apoptosis, whereas 25I-NBOMe may also induce apoptosis through a caspase-3-independent pathway, possibly involving increased intracellular Ca2⁺ levels and direct mitochondrial damage. These findings underscore the complex interplay between mitochondrial dysfunction, calcium dysregulation, and cell death pathways, highlighting the central role of mitochondria in the cytotoxicity of 2C-I and 25I-NBOMe.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Elevated Hemoglobin Adducts Derived from Crotonaldehyde in Healthy Smokers and Oral Cancer Patients by Nanoflow Liquid Chromatography Tandem Mass Spectrometry. The Role of Mitochondrial Dysfunction and Calcium Dysregulation in 2C-I and 25I-NBOMe-Induced Neurotoxicity. Pulsatilla saponin D inhibited the growth of osteosarcoma by regulating the JNK/ATF3 signaling pathway. Genotoxicity and fibrosis in human hepatocytes in vitro from exposure to low doses of PBDE-47, arsenic, or both chemicals. Sorafenib-induced cardiovascular toxicity: a cause for concern.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1