Zhenyu Wan, Ziyi Tang, Xi Zhang, Miles J. Padgett, Jian Wang
{"title":"Compact and reciprocal probe-signal-integrated rotational Doppler velocimetry with fiber-sculpted light","authors":"Zhenyu Wan, Ziyi Tang, Xi Zhang, Miles J. Padgett, Jian Wang","doi":"10.1038/s41377-025-01747-8","DOIUrl":null,"url":null,"abstract":"<p>In recent years, with the clarification of the mechanism of the rotational Doppler effect (RDE), there has attracted extensive attention to its development of applications, especially in the detection of the angular velocity of rotating objects. On the other hand, optical fiber technology is widely applied in laser velocimetry from beam delivery to scattered light collection, aiding the miniaturization of instruments. Here we report the first all-fiber rotational Doppler velocimetry (AF-RDV) with a single probe based on a fabricated mode-sculpted fiber-optic element. The constructed AF-RDV can be operated in two reciprocal schemes wherein exchanging the illuminating mode and detected mode. Using this, we experimentally demonstrate the mode-changing dependent nature of the RDE. Particularly, the results suggest that the rotational Doppler shift can be observed by mode-filtering the scattered signal even with a non-twisted probe light. We also show the achromatic property of the RDE by scanning the incident wavelength, enabling the AF-RDV within an ultra-broadband operation range. The AF-RDV exhibits favorable performance for detecting spinning rough surfaces. It may provide an exciting new practical sensing instrument with significant prospects for monitoring angular motion in both research and industry.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"28 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01747-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, with the clarification of the mechanism of the rotational Doppler effect (RDE), there has attracted extensive attention to its development of applications, especially in the detection of the angular velocity of rotating objects. On the other hand, optical fiber technology is widely applied in laser velocimetry from beam delivery to scattered light collection, aiding the miniaturization of instruments. Here we report the first all-fiber rotational Doppler velocimetry (AF-RDV) with a single probe based on a fabricated mode-sculpted fiber-optic element. The constructed AF-RDV can be operated in two reciprocal schemes wherein exchanging the illuminating mode and detected mode. Using this, we experimentally demonstrate the mode-changing dependent nature of the RDE. Particularly, the results suggest that the rotational Doppler shift can be observed by mode-filtering the scattered signal even with a non-twisted probe light. We also show the achromatic property of the RDE by scanning the incident wavelength, enabling the AF-RDV within an ultra-broadband operation range. The AF-RDV exhibits favorable performance for detecting spinning rough surfaces. It may provide an exciting new practical sensing instrument with significant prospects for monitoring angular motion in both research and industry.