{"title":"Quadruple-well ferroelectricity and moderate switching barrier in defective wurtzite α-Al2S3: a first-principles study","authors":"Yuto Shimomura, Saneyuki Ohno, Katsuro Hayashi, Hirofumi Akamatsu","doi":"10.1038/s41524-025-01519-3","DOIUrl":null,"url":null,"abstract":"<p>Wurtzite-type ferroelectrics are highly promising for next-generation microelectronic devices due to their ferroelectric properties and integration with exiting semiconductors. However, their high coercive fields, which are close to breakdown electric fields, need to be lowered. To deal with this issue and secure device reliability, much effort has been devoted to exploring novel wurtzite compounds with lower polarization switching barriers and implementing doping strategies. Here, we report first-principles calculations on polarization switching in cation-vacancy ordered wurtzite α-Al<sub>2</sub>S<sub>3</sub>, unveiling its uniaxial quadruple-well ferroelectricity and moderate switching barrier, 51 meV/cation, which is much lower than that of conventional wurtzite ferroelectrics. There are three important features relevant to the Al vacancies leading to the uncommon quadruple-well ferroelectricity and the moderate switching barrier: mitigation of cation-cation repulsion, structural flexibility that alleviates an in-plane lattice expansion, and formation of σ-like bonding states consisting of Al 3p<sub><i>z</i></sub> and S 3p<sub><i>z</i></sub> orbitals. Biaxial compressive strain and Ga doping lower the switching barriers by up to 40%. This study encourages experimental investigation of the ferroelectric properties for defective wurtzite α-Al<sub>2</sub>S<sub>3</sub> as a new promising material with unconventional and intriguing ferroelectricity and suggests a potential strategy for reducing switching barriers in wurtzite ferroelectrics: <i>introducing cation vacancies</i>.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"52 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01519-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Wurtzite-type ferroelectrics are highly promising for next-generation microelectronic devices due to their ferroelectric properties and integration with exiting semiconductors. However, their high coercive fields, which are close to breakdown electric fields, need to be lowered. To deal with this issue and secure device reliability, much effort has been devoted to exploring novel wurtzite compounds with lower polarization switching barriers and implementing doping strategies. Here, we report first-principles calculations on polarization switching in cation-vacancy ordered wurtzite α-Al2S3, unveiling its uniaxial quadruple-well ferroelectricity and moderate switching barrier, 51 meV/cation, which is much lower than that of conventional wurtzite ferroelectrics. There are three important features relevant to the Al vacancies leading to the uncommon quadruple-well ferroelectricity and the moderate switching barrier: mitigation of cation-cation repulsion, structural flexibility that alleviates an in-plane lattice expansion, and formation of σ-like bonding states consisting of Al 3pz and S 3pz orbitals. Biaxial compressive strain and Ga doping lower the switching barriers by up to 40%. This study encourages experimental investigation of the ferroelectric properties for defective wurtzite α-Al2S3 as a new promising material with unconventional and intriguing ferroelectricity and suggests a potential strategy for reducing switching barriers in wurtzite ferroelectrics: introducing cation vacancies.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.