More autumn tropical cyclone genesis in the South China Sea during El Niño to La Niña transition

IF 8.5 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES npj Climate and Atmospheric Science Pub Date : 2025-02-17 DOI:10.1038/s41612-025-00947-8
Lixia Pan, Jiepeng Chen, Xin Wang, Haigang Zhan, Wen Zhou, Johnny C. L. Chan
{"title":"More autumn tropical cyclone genesis in the South China Sea during El Niño to La Niña transition","authors":"Lixia Pan, Jiepeng Chen, Xin Wang, Haigang Zhan, Wen Zhou, Johnny C. L. Chan","doi":"10.1038/s41612-025-00947-8","DOIUrl":null,"url":null,"abstract":"<p>Previous studies focused on the spatial diversity of ENSO’s influence on tropical cyclones (TCs) in the western North Pacific (WNP), with less emphasis on temporal evolution. This study examines the variability of TC genesis in the WNP during boreal autumn (September-November) across three types of La Niña transitions: cyclic, multi-year, and episodic. The findings highlight significant differences, particularly in the South China Sea’s (SCS) role within the WNP region. During a cyclic La Niña, the SCS TC frequency is approximately 2.6 times greater than those of the other two types due to higher local humidity from increased water vapor transport from the Indian Ocean and convergence in the SCS, driven by an anomalous cyclone in the SCS and Maritime Continent. Observations and model simulations revealed that a warmer sea surface temperature in the Philippine Sea, a delayed effect of the preceding El Niño, triggered this cyclonic circulation and moisture influx.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"19 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-00947-8","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Previous studies focused on the spatial diversity of ENSO’s influence on tropical cyclones (TCs) in the western North Pacific (WNP), with less emphasis on temporal evolution. This study examines the variability of TC genesis in the WNP during boreal autumn (September-November) across three types of La Niña transitions: cyclic, multi-year, and episodic. The findings highlight significant differences, particularly in the South China Sea’s (SCS) role within the WNP region. During a cyclic La Niña, the SCS TC frequency is approximately 2.6 times greater than those of the other two types due to higher local humidity from increased water vapor transport from the Indian Ocean and convergence in the SCS, driven by an anomalous cyclone in the SCS and Maritime Continent. Observations and model simulations revealed that a warmer sea surface temperature in the Philippine Sea, a delayed effect of the preceding El Niño, triggered this cyclonic circulation and moisture influx.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Climate and Atmospheric Science
npj Climate and Atmospheric Science Earth and Planetary Sciences-Atmospheric Science
CiteScore
8.80
自引率
3.30%
发文量
87
审稿时长
21 weeks
期刊介绍: npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols. The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.
期刊最新文献
Age inequality in temperature-related fall mortality among old people in China in a warming climate Two contrasting tropical convection modes from the eastern Pacific to northern Africa that drive Eurasian teleconnections in boreal summer Sulfate formation through copper-catalyzed SO2 oxidation by NO2 at aerosol surfaces Warming triggers snowfall fraction loss Thresholds in High-Mountain Asia Dipolar hydroclimate pattern changes in southwest China during the last deglaciation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1