Lixia Pan, Jiepeng Chen, Xin Wang, Haigang Zhan, Wen Zhou, Johnny C. L. Chan
{"title":"More autumn tropical cyclone genesis in the South China Sea during El Niño to La Niña transition","authors":"Lixia Pan, Jiepeng Chen, Xin Wang, Haigang Zhan, Wen Zhou, Johnny C. L. Chan","doi":"10.1038/s41612-025-00947-8","DOIUrl":null,"url":null,"abstract":"<p>Previous studies focused on the spatial diversity of ENSO’s influence on tropical cyclones (TCs) in the western North Pacific (WNP), with less emphasis on temporal evolution. This study examines the variability of TC genesis in the WNP during boreal autumn (September-November) across three types of La Niña transitions: cyclic, multi-year, and episodic. The findings highlight significant differences, particularly in the South China Sea’s (SCS) role within the WNP region. During a cyclic La Niña, the SCS TC frequency is approximately 2.6 times greater than those of the other two types due to higher local humidity from increased water vapor transport from the Indian Ocean and convergence in the SCS, driven by an anomalous cyclone in the SCS and Maritime Continent. Observations and model simulations revealed that a warmer sea surface temperature in the Philippine Sea, a delayed effect of the preceding El Niño, triggered this cyclonic circulation and moisture influx.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"19 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-00947-8","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Previous studies focused on the spatial diversity of ENSO’s influence on tropical cyclones (TCs) in the western North Pacific (WNP), with less emphasis on temporal evolution. This study examines the variability of TC genesis in the WNP during boreal autumn (September-November) across three types of La Niña transitions: cyclic, multi-year, and episodic. The findings highlight significant differences, particularly in the South China Sea’s (SCS) role within the WNP region. During a cyclic La Niña, the SCS TC frequency is approximately 2.6 times greater than those of the other two types due to higher local humidity from increased water vapor transport from the Indian Ocean and convergence in the SCS, driven by an anomalous cyclone in the SCS and Maritime Continent. Observations and model simulations revealed that a warmer sea surface temperature in the Philippine Sea, a delayed effect of the preceding El Niño, triggered this cyclonic circulation and moisture influx.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.