Vishal Talukdar, Siddhartha Paul, Krishanu Mondal, Parthasarathi Das
{"title":"CuF2‐Catalyzed C‐N Cross‐Coupling of Aryl Silanes: Expanding the Scope of Chan‐Lam Type Reaction","authors":"Vishal Talukdar, Siddhartha Paul, Krishanu Mondal, Parthasarathi Das","doi":"10.1002/adsc.202401498","DOIUrl":null,"url":null,"abstract":"An efficient copper‐catalyzed Chan–Lam type N‐arylation of various amides, sulfonamides, urea, azoles, and amines has been demonstrated using a CuF2/DMSO catalytic system with structurally diverse aryl(trimethoxy)silanes under base and ligand‐free conditions. This approach facilitates effective C‐N cross‐coupling with user‐friendly organosilicon reagents without requiring an external fluoride source. CuF2 serves a dual function as both a catalyst and a desilylating agent, facilitating the cleavage of the aryl‐silane bond. The process is compatible with a broad range of substrates, ensuring high efficiency and excellent functional group compatibility. Moreover, this protocol is proven to be valuable for late‐stage modification of amide and sulfonamide‐containing drug molecules, as well as for synthesizing agrochemicals.","PeriodicalId":118,"journal":{"name":"Advanced Synthesis & Catalysis","volume":"64 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Synthesis & Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/adsc.202401498","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
An efficient copper‐catalyzed Chan–Lam type N‐arylation of various amides, sulfonamides, urea, azoles, and amines has been demonstrated using a CuF2/DMSO catalytic system with structurally diverse aryl(trimethoxy)silanes under base and ligand‐free conditions. This approach facilitates effective C‐N cross‐coupling with user‐friendly organosilicon reagents without requiring an external fluoride source. CuF2 serves a dual function as both a catalyst and a desilylating agent, facilitating the cleavage of the aryl‐silane bond. The process is compatible with a broad range of substrates, ensuring high efficiency and excellent functional group compatibility. Moreover, this protocol is proven to be valuable for late‐stage modification of amide and sulfonamide‐containing drug molecules, as well as for synthesizing agrochemicals.
期刊介绍:
Advanced Synthesis & Catalysis (ASC) is the leading primary journal in organic, organometallic, and applied chemistry.
The high impact of ASC can be attributed to the unique focus of the journal, which publishes exciting new results from academic and industrial labs on efficient, practical, and environmentally friendly organic synthesis. While homogeneous, heterogeneous, organic, and enzyme catalysis are key technologies to achieve green synthesis, significant contributions to the same goal by synthesis design, reaction techniques, flow chemistry, and continuous processing, multiphase catalysis, green solvents, catalyst immobilization, and recycling, separation science, and process development are also featured in ASC. The Aims and Scope can be found in the Notice to Authors or on the first page of the table of contents in every issue.