Sensitive and Anisotropic Room‐Temperature Terahertz Photodetection in Quasi‐1D Nodal‐Line Semimetal NbNiTe5

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2025-02-17 DOI:10.1002/smll.202410701
Keqin Tang, Xiaokai Pan, Zhuo Dong, Liu Yang, Dong Wang, Xingang Hou, Pengdong Wang, Yong Fang, Junyong Wang, Lin Wang, Kai Zhang
{"title":"Sensitive and Anisotropic Room‐Temperature Terahertz Photodetection in Quasi‐1D Nodal‐Line Semimetal NbNiTe5","authors":"Keqin Tang, Xiaokai Pan, Zhuo Dong, Liu Yang, Dong Wang, Xingang Hou, Pengdong Wang, Yong Fang, Junyong Wang, Lin Wang, Kai Zhang","doi":"10.1002/smll.202410701","DOIUrl":null,"url":null,"abstract":"Low‐dimensional topological materials merge the benefits of reduced dimensionality with the nontrivial topological phases, garnering significant attention as promising candidates for next‐generation optoelectronic devices. The quasi‐1D nodal‐line semimetal NbNiTe<jats:sub>5</jats:sub> showcases distinct in‐plane anisotropy alongside robust Dirac nodal‐line points, rendering it a fascinating platform for exploring the intricate interplay between novel quantum states of matter and low‐energy radiation. Here, sensitive and anisotropic terahertz photodetection driven by Dirac fermions and the intrinsic anisotropic properties of NbNiTe<jats:sub>5</jats:sub> are presented. Leveraging the enhanced carrier transport characteristics derived from nontrivial band topology, room‐temperature responsivity of 1.36 A W<jats:sup>−1</jats:sup>, noise equivalent power of 5.31 × 10<jats:sup>−11</jats:sup> W Hz<jats:sup>−1/2</jats:sup> as well as fast photoresponse speed of 4.5 µs are achieved. The exceptionally high anisotropic photoresponse ratio of 84 highlights the potential for improving the performance of polarization‐sensitive photodetectors. This work is crucial for advancing the understanding of nontrivial topology and the development of terahertz photodetector technologies.","PeriodicalId":228,"journal":{"name":"Small","volume":"13 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202410701","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Low‐dimensional topological materials merge the benefits of reduced dimensionality with the nontrivial topological phases, garnering significant attention as promising candidates for next‐generation optoelectronic devices. The quasi‐1D nodal‐line semimetal NbNiTe5 showcases distinct in‐plane anisotropy alongside robust Dirac nodal‐line points, rendering it a fascinating platform for exploring the intricate interplay between novel quantum states of matter and low‐energy radiation. Here, sensitive and anisotropic terahertz photodetection driven by Dirac fermions and the intrinsic anisotropic properties of NbNiTe5 are presented. Leveraging the enhanced carrier transport characteristics derived from nontrivial band topology, room‐temperature responsivity of 1.36 A W−1, noise equivalent power of 5.31 × 10−11 W Hz−1/2 as well as fast photoresponse speed of 4.5 µs are achieved. The exceptionally high anisotropic photoresponse ratio of 84 highlights the potential for improving the performance of polarization‐sensitive photodetectors. This work is crucial for advancing the understanding of nontrivial topology and the development of terahertz photodetector technologies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低维拓扑材料融合了降维与非复杂拓扑相的优点,作为下一代光电器件的候选材料备受关注。准一维节点线半金属 NbNiTe5 具有明显的面内各向异性和强健的狄拉克节点线点,使其成为探索新型物质量子态与低能辐射之间错综复杂相互作用的迷人平台。本文介绍了由狄拉克费米子和 NbNiTe5 固有各向异性驱动的灵敏且各向异性的太赫兹光电探测。利用非三维带拓扑结构带来的增强载流子传输特性,该器件实现了 1.36 A W-1 的室温响应率、5.31 × 10-11 W Hz-1/2 的噪声等效功率以及 4.5 µs 的快速光响应速度。84 的超高各向异性光响应比凸显了提高偏振敏感光电探测器性能的潜力。这项工作对于促进对非微观拓扑结构的理解和太赫兹光电探测器技术的发展至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
Issue Information Biomimetic Superhydrophobic Surfaces by Nanoarchitectonics with Natural Sunflower Pollen (Small 7/2025) Interdisciplinary Hybrid Solar-Driven Evaporators: Theoretical Framework of Fundamental Mechanisms and Applications (Small 7/2025) Droplet Friction on Superhydrophobic Surfaces Scales With Liquid-Solid Contact Fraction (Small 7/2025) Honeycomb ZIF-67 Membrane With Hierarchical Channels for High-Permeance Gas Separation (Small 7/2025)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1