{"title":"Electrocatalytic Hydrogenation Boosted by Surface Hydroxyls-Modulated Hydrogen Migration over Nonreducible Oxides","authors":"Shi-Lin Xu, Wei Wang, Hao-Tong Li, Yu-Xiang Gao, Yuan Min, Peigen Liu, Xusheng Zheng, Dong-Feng Liu, Jie-Jie Chen, Han-Qing Yu, Xiao Zhou, Yuen Wu","doi":"10.1002/adma.202500371","DOIUrl":null,"url":null,"abstract":"The migration of atomic hydrogen species over heterogeneous catalysts is deemed essential for hydrogenation reactions, a process closely related to the catalyst's functionalities. While surface hydroxyls-assisted hydrogen spillover is well documented on reducible oxide supports, its effect on widely-used nonreducible supports, especially in electrocatalytic reactions with water as the hydrogen source, remains a subject of debate. Herein, a nonreducible oxide-anchored copper single-atom catalyst (Cu<sub>1</sub>/SiO<sub>2</sub>) is designed and uncover that the surface hydroxyls on SiO<sub>2</sub> can serve as efficient transport channels for hydrogen spillover, thereby enhancing the activated hydrogen coverage on the catalyst and favoring the hydrogenation reaction. Using electrocatalytic dechlorination as a model reaction, the Cu<sub>1</sub>/SiO<sub>2</sub> catalyst delivers hydrodechlorination activity 42 times greater than that of commercial Pd/C. An integrated experimental and theoretical investigation elucidates that surface hydroxyls facilitate the spillover of hydrogen intermediates formed at the Cu sites, boosting the coverage of active hydrogen on the surface of the Cu<sub>1</sub>/SiO<sub>2</sub>. This work demonstrates the feasibility of surface hydroxyls acting as transport channels for hydrogen-species to boost hydrogen spillover on nonreducible oxide supports and paves the way for designing advanced selective hydrogenation electrocatalysts.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"5 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202500371","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The migration of atomic hydrogen species over heterogeneous catalysts is deemed essential for hydrogenation reactions, a process closely related to the catalyst's functionalities. While surface hydroxyls-assisted hydrogen spillover is well documented on reducible oxide supports, its effect on widely-used nonreducible supports, especially in electrocatalytic reactions with water as the hydrogen source, remains a subject of debate. Herein, a nonreducible oxide-anchored copper single-atom catalyst (Cu1/SiO2) is designed and uncover that the surface hydroxyls on SiO2 can serve as efficient transport channels for hydrogen spillover, thereby enhancing the activated hydrogen coverage on the catalyst and favoring the hydrogenation reaction. Using electrocatalytic dechlorination as a model reaction, the Cu1/SiO2 catalyst delivers hydrodechlorination activity 42 times greater than that of commercial Pd/C. An integrated experimental and theoretical investigation elucidates that surface hydroxyls facilitate the spillover of hydrogen intermediates formed at the Cu sites, boosting the coverage of active hydrogen on the surface of the Cu1/SiO2. This work demonstrates the feasibility of surface hydroxyls acting as transport channels for hydrogen-species to boost hydrogen spillover on nonreducible oxide supports and paves the way for designing advanced selective hydrogenation electrocatalysts.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.