Neural Network Potential with Multiresolution Approach Enables Accurate Prediction of Reaction Free Energies in Solution

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2025-02-17 DOI:10.1021/jacs.4c17015
Felix Pultar, Moritz Thürlemann, Igor Gordiy, Eva Doloszeski, Sereina Riniker
{"title":"Neural Network Potential with Multiresolution Approach Enables Accurate Prediction of Reaction Free Energies in Solution","authors":"Felix Pultar, Moritz Thürlemann, Igor Gordiy, Eva Doloszeski, Sereina Riniker","doi":"10.1021/jacs.4c17015","DOIUrl":null,"url":null,"abstract":"We present the design and implementation of a novel neural network potential (NNP) and its combination with an electrostatic embedding scheme, commonly used within the context of hybrid quantum-mechanical/molecular-mechanical (QM/MM) simulations. Substitution of a computationally expensive QM Hamiltonian by an NNP with the same accuracy largely reduces the computational cost and enables efficient sampling in prospective MD simulations, the main limitation faced by traditional QM/MM setups. The model relies on the recently introduced anisotropic message passing (AMP) formalism to compute atomic interactions and encode symmetries found in QM systems. AMP is shown to be highly efficient in terms of both data and computational costs and can be readily scaled to sample systems involving more than 350 solute and 40,000 solvent atoms for hundreds of nanoseconds using umbrella sampling. Most deviations of AMP predictions from the underlying DFT ground truth lie within chemical accuracy (4.184 kJ mol<sup>–1</sup>). The performance and broad applicability of our approach are showcased by calculating the free-energy surface of alanine dipeptide, the preferred ligation states of nickel phosphine complexes, and dissociation free energies of charged pyridine and quinoline dimers. Results with this ML/MM approach show excellent agreement with experimental data and reach chemical accuracy in most cases. In contrast, free energies calculated with static DFT calculations paired with implicit solvent models or QM/MM MD simulations using cheaper semiempirical methods show up to ten times higher deviation from the experimental ground truth and sometimes even fail to reproduce qualitative trends.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"85 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c17015","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We present the design and implementation of a novel neural network potential (NNP) and its combination with an electrostatic embedding scheme, commonly used within the context of hybrid quantum-mechanical/molecular-mechanical (QM/MM) simulations. Substitution of a computationally expensive QM Hamiltonian by an NNP with the same accuracy largely reduces the computational cost and enables efficient sampling in prospective MD simulations, the main limitation faced by traditional QM/MM setups. The model relies on the recently introduced anisotropic message passing (AMP) formalism to compute atomic interactions and encode symmetries found in QM systems. AMP is shown to be highly efficient in terms of both data and computational costs and can be readily scaled to sample systems involving more than 350 solute and 40,000 solvent atoms for hundreds of nanoseconds using umbrella sampling. Most deviations of AMP predictions from the underlying DFT ground truth lie within chemical accuracy (4.184 kJ mol–1). The performance and broad applicability of our approach are showcased by calculating the free-energy surface of alanine dipeptide, the preferred ligation states of nickel phosphine complexes, and dissociation free energies of charged pyridine and quinoline dimers. Results with this ML/MM approach show excellent agreement with experimental data and reach chemical accuracy in most cases. In contrast, free energies calculated with static DFT calculations paired with implicit solvent models or QM/MM MD simulations using cheaper semiempirical methods show up to ten times higher deviation from the experimental ground truth and sometimes even fail to reproduce qualitative trends.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Analysis of the TiO2 Photoanode Process Using Intensity Modulated Photocurrent Spectroscopy and Distribution of Relaxation Times Red Light Mediated Photoconversion of Silicon Rhodamines to Oxygen Rhodamines for Single-Molecule Microscopy Light-Independent Fe3O4–Methanosarcina acetivorans Biohybrid Enhances Nitrogen Fixation and Methanogenesis Rapid Microwave-Assisted Chemical Recycling of Poly(p-Phenylene Terephthalamide) Verdazyl-Based Radicals for High-Field Dynamic Nuclear Polarization NMR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1