Unveiling the Fluorination Pathway of Ruddlesden–Popper Oxyfluorides: A Comprehensive in Situ X-ray and Neutron Diffraction Study

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2025-02-17 DOI:10.1021/jacs.4c18187
Jonas Jacobs, Andy Bivour, Vadim Sikolenko, Holger Kohlmann, Thomas C. Hansen, James R. Hester, Ke Xu, Jörn Schmedt auf der Günne, Stefan G. Ebbinghaus
{"title":"Unveiling the Fluorination Pathway of Ruddlesden–Popper Oxyfluorides: A Comprehensive in Situ X-ray and Neutron Diffraction Study","authors":"Jonas Jacobs, Andy Bivour, Vadim Sikolenko, Holger Kohlmann, Thomas C. Hansen, James R. Hester, Ke Xu, Jörn Schmedt auf der Günne, Stefan G. Ebbinghaus","doi":"10.1021/jacs.4c18187","DOIUrl":null,"url":null,"abstract":"Ruddlesden–Popper oxyfluorides exhibit unique properties, but their synthesis is often hindered by low thermodynamic stability. To overcome this challenge, understanding the formation mechanism of these materials is crucial for optimizing the reaction conditions and accessing new products. This study presents an in-depth investigation of the fluorination reaction of La<sub>2</sub>NiO<sub>4</sub> with poly(vinylidene fluoride) (PVDF), targeting the oxyfluorides La<sub>2</sub>NiO<sub>3</sub>F<sub>2</sub> and La<sub>2</sub>NiO<sub>2.5</sub>F<sub>3</sub>, which exhibit distinct structural distortions. <i>In situ</i> X-ray diffraction experiments, performed on a laboratory diffractometer, revealed the presence of four distinct reaction intermediates. The crystal structures of these intermediates were further elucidated through X-ray and neutron powder diffraction experiments, complemented by <i>in situ</i> neutron powder diffraction data obtained using a setup featuring a low-background cell made from single-crystalline sapphire. <sup>19</sup>F MAS NMR spectroscopy was employed to localize the fluoride ions and to track the consumption of PVDF. By systematically optimizing reaction conditions, we successfully obtained both oxyfluorides and quantified the phase evolution of all intermediates through extensive Rietveld refinements, yielding the following reaction steps: La<sub>2</sub>NiO<sub>4</sub> (<i>I</i>4/<i>mmm</i>) → Inter#1 (<i>Fmmm</i>) → Inter#2 (<i>Fmmm</i>, with increased orthorhombic distortion) → Inter#3 (<i>C</i>2/<i>c</i>) → La<sub>2</sub>NiO<sub>3</sub>F<sub>2</sub> (<i>Cccm</i>). In the presence of 50% excess PVDF, La<sub>2</sub>NiO<sub>3</sub>F<sub>2</sub> is not obtained from Inter#3 and the reaction instead progresses via Inter#4 (<i>P</i>4<sub>2</sub>/<i>nnm</i>) to La<sub>2</sub>NiO<sub>2.5</sub>F<sub>3</sub> (<i>P</i>4<sub>2</sub>/<i>nnm</i>, with a larger unit cell). This study demonstrates the power of laboratory <i>in situ</i> XRD experiments in elucidating complex fluorination reaction mechanisms, enabling the synthesis of new oxyfluorides with interesting physical properties. The <i>in situ</i> approach represents a significant advancement over traditional trial-and-error methods, which are still prevalent in solid-state synthesis.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"5 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c18187","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ruddlesden–Popper oxyfluorides exhibit unique properties, but their synthesis is often hindered by low thermodynamic stability. To overcome this challenge, understanding the formation mechanism of these materials is crucial for optimizing the reaction conditions and accessing new products. This study presents an in-depth investigation of the fluorination reaction of La2NiO4 with poly(vinylidene fluoride) (PVDF), targeting the oxyfluorides La2NiO3F2 and La2NiO2.5F3, which exhibit distinct structural distortions. In situ X-ray diffraction experiments, performed on a laboratory diffractometer, revealed the presence of four distinct reaction intermediates. The crystal structures of these intermediates were further elucidated through X-ray and neutron powder diffraction experiments, complemented by in situ neutron powder diffraction data obtained using a setup featuring a low-background cell made from single-crystalline sapphire. 19F MAS NMR spectroscopy was employed to localize the fluoride ions and to track the consumption of PVDF. By systematically optimizing reaction conditions, we successfully obtained both oxyfluorides and quantified the phase evolution of all intermediates through extensive Rietveld refinements, yielding the following reaction steps: La2NiO4 (I4/mmm) → Inter#1 (Fmmm) → Inter#2 (Fmmm, with increased orthorhombic distortion) → Inter#3 (C2/c) → La2NiO3F2 (Cccm). In the presence of 50% excess PVDF, La2NiO3F2 is not obtained from Inter#3 and the reaction instead progresses via Inter#4 (P42/nnm) to La2NiO2.5F3 (P42/nnm, with a larger unit cell). This study demonstrates the power of laboratory in situ XRD experiments in elucidating complex fluorination reaction mechanisms, enabling the synthesis of new oxyfluorides with interesting physical properties. The in situ approach represents a significant advancement over traditional trial-and-error methods, which are still prevalent in solid-state synthesis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Analysis of the TiO2 Photoanode Process Using Intensity Modulated Photocurrent Spectroscopy and Distribution of Relaxation Times Red Light Mediated Photoconversion of Silicon Rhodamines to Oxygen Rhodamines for Single-Molecule Microscopy Light-Independent Fe3O4–Methanosarcina acetivorans Biohybrid Enhances Nitrogen Fixation and Methanogenesis Rapid Microwave-Assisted Chemical Recycling of Poly(p-Phenylene Terephthalamide) Verdazyl-Based Radicals for High-Field Dynamic Nuclear Polarization NMR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1