Yu Zhang, Kun-kun Deng, Cui-ju Wang, Kai-bo Nie, Quan-xin Shi, Yi-jia Li
{"title":"Hot deformation and hot processing behavior of deformable Tip reinforced Mg-5Zn-0.5Ca composite","authors":"Yu Zhang, Kun-kun Deng, Cui-ju Wang, Kai-bo Nie, Quan-xin Shi, Yi-jia Li","doi":"10.1016/j.jmst.2024.12.045","DOIUrl":null,"url":null,"abstract":"The spherical Ti particle (Ti<sub>p</sub>) reinforced Mg-5Zn-0.5Ca (Ti<sub>p</sub>/ZX50) composite was prepared via the semi-solid stirring casting process and the effects of Ti<sub>p</sub> on the hot deformation and hot processing behavior of matrix alloy were investigated through uniaxial hot compression testing. The results indicate that a particle deformation zone (PDZ) forms around the Ti<sub>p</sub> with the deformation of the Ti<sub>p</sub>/ZX50 composite, which is propitious to the dynamic recrystallization (DRX) of the matrix alloy. The range of the PDZ and the promoting effect of the Ti<sub>p</sub> on DRXed nucleation are inversely related to the deformation degree of the Ti<sub>p</sub>. Moreover, the deformation of Ti<sub>p</sub> alleviates the high stress in the matrix alloy during deformation, expanding the processing range and reducing the average deformation activation energy of the matrix alloy. Notably, the minimum processing temperature (493 K) of the Ti<sub>p</sub>/ZX50 composite is significantly lower than that of hardened particle reinforced magnesium matrix composites. The hot deformation mechanism of the Ti<sub>p</sub>/ZX50 composite is dislocation climb controlled by both lattice diffusion and pipe diffusion.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"51 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.12.045","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The spherical Ti particle (Tip) reinforced Mg-5Zn-0.5Ca (Tip/ZX50) composite was prepared via the semi-solid stirring casting process and the effects of Tip on the hot deformation and hot processing behavior of matrix alloy were investigated through uniaxial hot compression testing. The results indicate that a particle deformation zone (PDZ) forms around the Tip with the deformation of the Tip/ZX50 composite, which is propitious to the dynamic recrystallization (DRX) of the matrix alloy. The range of the PDZ and the promoting effect of the Tip on DRXed nucleation are inversely related to the deformation degree of the Tip. Moreover, the deformation of Tip alleviates the high stress in the matrix alloy during deformation, expanding the processing range and reducing the average deformation activation energy of the matrix alloy. Notably, the minimum processing temperature (493 K) of the Tip/ZX50 composite is significantly lower than that of hardened particle reinforced magnesium matrix composites. The hot deformation mechanism of the Tip/ZX50 composite is dislocation climb controlled by both lattice diffusion and pipe diffusion.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.