An innovative approach to remediation of uranium-contaminated fine soil using magnetic separation and chemical washing

IF 5.4 Q2 ENGINEERING, ENVIRONMENTAL Journal of hazardous materials advances Pub Date : 2025-02-13 DOI:10.1016/j.hazadv.2025.100641
Ilgook Kim , In-Ho Yoon , June-Hyun Kim , Seeun Chang , Hyun-Kyu Lee
{"title":"An innovative approach to remediation of uranium-contaminated fine soil using magnetic separation and chemical washing","authors":"Ilgook Kim ,&nbsp;In-Ho Yoon ,&nbsp;June-Hyun Kim ,&nbsp;Seeun Chang ,&nbsp;Hyun-Kyu Lee","doi":"10.1016/j.hazadv.2025.100641","DOIUrl":null,"url":null,"abstract":"<div><div>Uranium (U) contamination in soil, derived from industrial activities and nuclear facility operations, poses significant environmental and health risks. This study explores an innovative remediation approach combining physical separation and chemical washing to treat U-contaminated fine soil. Fine soil samples (&lt; 0.2 mm) were subjected to a series of experiments focusing on the selective separation of silt and clay particles using PEI-coated γ-Fe<sub>2</sub>O<sub>3</sub> magnetic nanoparticles followed by a two-step acid washing treatment. The magnetic separation effectively targeted negatively charged clay particles, utilizing strong electrostatic attraction to form flocs, which were then easily separated under a magnetic field. Two-step chemical washings were performed at room temperature to decontaminate the fine soil, employing H<sub>2</sub>SO<sub>4</sub>, HNO<sub>3</sub>, Na<sub>2</sub>CO<sub>3</sub>, and NaHCO<sub>3</sub>. The highest U removal efficiency was achieved using 1.0 M H<sub>2</sub>SO<sub>4</sub>, reducing the residual radioactivity to below the clearance level recommended by IAEA (&lt; 1.0 Bq/g). This combined method proved highly effective, showing over 99% U removal efficiency for fine soils larger than 0.5 mm without significant soil loss. The research highlights the potential for integrating advanced material sciences into environmental remediation practices to mitigate the risks associated with U-contaminated soils.</div></div>","PeriodicalId":73763,"journal":{"name":"Journal of hazardous materials advances","volume":"18 ","pages":"Article 100641"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772416625000531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Uranium (U) contamination in soil, derived from industrial activities and nuclear facility operations, poses significant environmental and health risks. This study explores an innovative remediation approach combining physical separation and chemical washing to treat U-contaminated fine soil. Fine soil samples (< 0.2 mm) were subjected to a series of experiments focusing on the selective separation of silt and clay particles using PEI-coated γ-Fe2O3 magnetic nanoparticles followed by a two-step acid washing treatment. The magnetic separation effectively targeted negatively charged clay particles, utilizing strong electrostatic attraction to form flocs, which were then easily separated under a magnetic field. Two-step chemical washings were performed at room temperature to decontaminate the fine soil, employing H2SO4, HNO3, Na2CO3, and NaHCO3. The highest U removal efficiency was achieved using 1.0 M H2SO4, reducing the residual radioactivity to below the clearance level recommended by IAEA (< 1.0 Bq/g). This combined method proved highly effective, showing over 99% U removal efficiency for fine soils larger than 0.5 mm without significant soil loss. The research highlights the potential for integrating advanced material sciences into environmental remediation practices to mitigate the risks associated with U-contaminated soils.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of hazardous materials advances
Journal of hazardous materials advances Environmental Engineering
CiteScore
4.80
自引率
0.00%
发文量
0
审稿时长
50 days
期刊最新文献
Supercritical water gasification for hospital wastewater Biofilm formation on the polyethylene terephthalate plastic surface weathered under laboratory and real landfill conditions Green extraction of biomass from waste goat bones for applications in catalysis, wastewater treatment, and water disinfection Metagenomic insights into correlation of microbiota and antibiotic resistance genes in the worker-pig-soil interface: A One Health surveillance on Chongming Island, China Combined effect of elemental sulfur application and co-cropping of Alliaria petiolata and Salix aquatica grandis on trace element phytoextraction from contaminated soil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1