A high maneuvering motion strategy and stable control method for tandem twin-rotor aerial-aquatic vehicles near the water surface

IF 5 Q1 ENGINEERING, MULTIDISCIPLINARY Defence Technology(防务技术) Pub Date : 2025-02-01 DOI:10.1016/j.dt.2024.09.009
Sifan Wu , Maosen Shao , Sihuan Wu , Zhilin He , Hui Wang , Jinxiu Zhang , Yuan Liu
{"title":"A high maneuvering motion strategy and stable control method for tandem twin-rotor aerial-aquatic vehicles near the water surface","authors":"Sifan Wu ,&nbsp;Maosen Shao ,&nbsp;Sihuan Wu ,&nbsp;Zhilin He ,&nbsp;Hui Wang ,&nbsp;Jinxiu Zhang ,&nbsp;Yuan Liu","doi":"10.1016/j.dt.2024.09.009","DOIUrl":null,"url":null,"abstract":"<div><div>The maneuverability and stealth of aerial-aquatic vehicles (AAVs) is of significant importance for future integrated air-sea combat missions. To improve the maneuverability and stealth of AAVs near the water surface, this paper proposed a high-maneuverability skipping motion strategy for the tandem twin-rotor AAV, inspired by the motion behavior of the flying fish to avoid aquatic and aerial predators near the water surface. The novel tandem twin-rotor AAV was employed as the research subject and a strategy-based ADRC control method for validation, comparing it with a strategy-based PID control method. The results indicate that both control methods enable the designed AAV to achieve high stealth and maneuverability near the water surface with robust control stability. The strategy-based ADRC control method exhibits a certain advantage in controlling height, pitch angle, and reducing impact force. This motion strategy will offer an inspiring approach for the practical application of AAVs to some extent.</div></div>","PeriodicalId":58209,"journal":{"name":"Defence Technology(防务技术)","volume":"44 ","pages":"Pages 206-220"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defence Technology(防务技术)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214914724002344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The maneuverability and stealth of aerial-aquatic vehicles (AAVs) is of significant importance for future integrated air-sea combat missions. To improve the maneuverability and stealth of AAVs near the water surface, this paper proposed a high-maneuverability skipping motion strategy for the tandem twin-rotor AAV, inspired by the motion behavior of the flying fish to avoid aquatic and aerial predators near the water surface. The novel tandem twin-rotor AAV was employed as the research subject and a strategy-based ADRC control method for validation, comparing it with a strategy-based PID control method. The results indicate that both control methods enable the designed AAV to achieve high stealth and maneuverability near the water surface with robust control stability. The strategy-based ADRC control method exhibits a certain advantage in controlling height, pitch angle, and reducing impact force. This motion strategy will offer an inspiring approach for the practical application of AAVs to some extent.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Defence Technology(防务技术)
Defence Technology(防务技术) Mechanical Engineering, Control and Systems Engineering, Industrial and Manufacturing Engineering
CiteScore
8.70
自引率
0.00%
发文量
728
审稿时长
25 days
期刊介绍: Defence Technology, a peer reviewed journal, is published monthly and aims to become the best international academic exchange platform for the research related to defence technology. It publishes original research papers having direct bearing on defence, with a balanced coverage on analytical, experimental, numerical simulation and applied investigations. It covers various disciplines of science, technology and engineering.
期刊最新文献
IFC - Editorial Board A novel transient strategy: transient electronics based on energetic materials Synthesis of energetic materials by microfluidics Ballistic response mechanism and resistance-driven evaluation method of UHMWPE composite The hydrodynamic RAM effect: Review of historic experiments, model developments and simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1