An efficient and accurate numerical method for simulating close-range blast loads of cylindrical charges based on neural network

IF 5 Q1 ENGINEERING, MULTIDISCIPLINARY Defence Technology(防务技术) Pub Date : 2025-02-01 DOI:10.1016/j.dt.2024.10.001
Ting Liu , Changhai Chen , Han Li , Yaowen Yu , Yuansheng Cheng
{"title":"An efficient and accurate numerical method for simulating close-range blast loads of cylindrical charges based on neural network","authors":"Ting Liu ,&nbsp;Changhai Chen ,&nbsp;Han Li ,&nbsp;Yaowen Yu ,&nbsp;Yuansheng Cheng","doi":"10.1016/j.dt.2024.10.001","DOIUrl":null,"url":null,"abstract":"<div><div>To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian (CEL) method in predicting close-range air blast loads of cylindrical charges, a neural network-based simulation (NNS) method with higher accuracy and better efficiency was proposed. The NNS method consisted of three main steps. First, the parameters of blast loads, including the peak pressures and impulses of cylindrical charges with different aspect ratios (<em>L</em>/<em>D</em>) at different stand-off distances and incident angles were obtained by two-dimensional numerical simulations. Subsequently, incident shape factors of cylindrical charges with arbitrary aspect ratios were predicted by a neural network. Finally, reflected shape factors were derived and implemented into the subroutine of the ABAQUS code to modify the CONWEP model, including modifications of impulse and overpressure. The reliability of the proposed NNS method was verified by related experimental results. Remarkable accuracy improvement was acquired by the proposed NNS method compared with the unmodified CONWEP model. Moreover, huge efficiency superiority was obtained by the proposed NNS method compared with the CEL method. The proposed NNS method showed good accuracy when the scaled distance was greater than 0.2 m/kg<sup>1/3</sup>. It should be noted that there is no need to generate a new dataset again since the blast loads satisfy the similarity law, and the proposed NNS method can be directly used to simulate the blast loads generated by different cylindrical charges. The proposed NNS method with high efficiency and accuracy can be used as an effective method to analyze the dynamic response of structures under blast loads, and it has significant application prospects in designing protective structures.</div></div>","PeriodicalId":58209,"journal":{"name":"Defence Technology(防务技术)","volume":"44 ","pages":"Pages 257-271"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defence Technology(防务技术)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214914724002356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian (CEL) method in predicting close-range air blast loads of cylindrical charges, a neural network-based simulation (NNS) method with higher accuracy and better efficiency was proposed. The NNS method consisted of three main steps. First, the parameters of blast loads, including the peak pressures and impulses of cylindrical charges with different aspect ratios (L/D) at different stand-off distances and incident angles were obtained by two-dimensional numerical simulations. Subsequently, incident shape factors of cylindrical charges with arbitrary aspect ratios were predicted by a neural network. Finally, reflected shape factors were derived and implemented into the subroutine of the ABAQUS code to modify the CONWEP model, including modifications of impulse and overpressure. The reliability of the proposed NNS method was verified by related experimental results. Remarkable accuracy improvement was acquired by the proposed NNS method compared with the unmodified CONWEP model. Moreover, huge efficiency superiority was obtained by the proposed NNS method compared with the CEL method. The proposed NNS method showed good accuracy when the scaled distance was greater than 0.2 m/kg1/3. It should be noted that there is no need to generate a new dataset again since the blast loads satisfy the similarity law, and the proposed NNS method can be directly used to simulate the blast loads generated by different cylindrical charges. The proposed NNS method with high efficiency and accuracy can be used as an effective method to analyze the dynamic response of structures under blast loads, and it has significant application prospects in designing protective structures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Defence Technology(防务技术)
Defence Technology(防务技术) Mechanical Engineering, Control and Systems Engineering, Industrial and Manufacturing Engineering
CiteScore
8.70
自引率
0.00%
发文量
728
审稿时长
25 days
期刊介绍: Defence Technology, a peer reviewed journal, is published monthly and aims to become the best international academic exchange platform for the research related to defence technology. It publishes original research papers having direct bearing on defence, with a balanced coverage on analytical, experimental, numerical simulation and applied investigations. It covers various disciplines of science, technology and engineering.
期刊最新文献
IFC - Editorial Board A novel transient strategy: transient electronics based on energetic materials Synthesis of energetic materials by microfluidics Ballistic response mechanism and resistance-driven evaluation method of UHMWPE composite The hydrodynamic RAM effect: Review of historic experiments, model developments and simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1