Shuping Wu , Peiming Shi , Xuefang Xu , Xu Yang , Ruixiong Li , Zijian Qiao
{"title":"KMDSAN: A novel method for cross-domain and unsupervised bearing fault diagnosis","authors":"Shuping Wu , Peiming Shi , Xuefang Xu , Xu Yang , Ruixiong Li , Zijian Qiao","doi":"10.1016/j.knosys.2025.113170","DOIUrl":null,"url":null,"abstract":"<div><div>Cross-domain bearing fault diagnosis is a serious challenge due to the unlabeled dataset. Deep subdomain adaptation network assisted by K-means clustering algorithm (KMDSAN), a diagnosis method based on non-adversarial network and alignment of subdomain, is proposed in this paper. Taking deep subdomain adaptation network (DSAN) as basic framework is the main difference between KMDSAN and most existing methods, because DSAN emphasizes the subdomain alignment rather than global alignment. Additionally, the K-means clustering algorithm is utilized to optimize the local maximum mean discrepancy to improve the performance of DSAN. Finally, a deep network with an improved attention mechanism is designed for the feature extraction of original bearing vibration signal. In comparison to other methods, KMDSAN is concise yet highly effective, and results from two datasets related to bearing demonstrate that the proposed method achieves excellent diagnosis accuracy.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"312 ","pages":"Article 113170"},"PeriodicalIF":7.2000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705125002175","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Cross-domain bearing fault diagnosis is a serious challenge due to the unlabeled dataset. Deep subdomain adaptation network assisted by K-means clustering algorithm (KMDSAN), a diagnosis method based on non-adversarial network and alignment of subdomain, is proposed in this paper. Taking deep subdomain adaptation network (DSAN) as basic framework is the main difference between KMDSAN and most existing methods, because DSAN emphasizes the subdomain alignment rather than global alignment. Additionally, the K-means clustering algorithm is utilized to optimize the local maximum mean discrepancy to improve the performance of DSAN. Finally, a deep network with an improved attention mechanism is designed for the feature extraction of original bearing vibration signal. In comparison to other methods, KMDSAN is concise yet highly effective, and results from two datasets related to bearing demonstrate that the proposed method achieves excellent diagnosis accuracy.
期刊介绍:
Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.