{"title":"Single-atom nanozymes: Recent advances and perspectives toward application in food analysis","authors":"Qiuping Wang , Yuen Wu , Yu Mao , Lei Zheng","doi":"10.1016/j.tifs.2025.104905","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Ensuring food safety has become a global priority due to increasing consumer demand for green, safe and nutritious food, necessitating advanced technologies for precise food quality evaluation. Nanozymes, nanomaterials with enzyme-mimicking catalytic properties, have attracted attention for their cost-effectiveness, stability and tunable features. However, limitations such as uncertain active sites and low catalytic efficiency hinder their broader application. Single-atom nanozymes (SAzymes) overcome these challenges with maximized atom utilization and well-defined structures, enabling the precise replication of metalloenzymes active centers and spatial configurations at the atomic scale. This design significantly enhances catalytic performance, positioning SAzymes as a promising frontier in food analysis.</div></div><div><h3>Scope and approach</h3><div>This review discusses the synthesis strategies of SAzymes and their influence on biocatalytic performance, emphasizing metal active center selection and coordination shells modulation. It highlights key advancements in SAzyme applications for evaluating food nutrients and detecting food safety. Two major challenges including low catalytic efficiency in complex food matrices and limited understanding of catalytic mechanisms are examined. Strategic pathways to overcome these challenges are proposed, promoting the integration of SAzymes into food analysis.</div></div><div><h3>Key finds and conclusions</h3><div>Nanozymes have garnered extensive attention due to their enzyme-like activity and robustness, but face challenges including complex compositions, low active site density and inadequate substrate specificity. In contrast, SAzymes with maximum atomic efficiency and highly tunable structure characteristics exhibit superior catalytic activities and specificity. These attributes are pivotal for advancing rapid, sensitive and on-site food analysis. This review offers fresh insights and practical guidance, shedding light on the expanding potential of SAzymes in food assay applications.</div></div>","PeriodicalId":441,"journal":{"name":"Trends in Food Science & Technology","volume":"158 ","pages":"Article 104905"},"PeriodicalIF":15.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Food Science & Technology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092422442500041X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Ensuring food safety has become a global priority due to increasing consumer demand for green, safe and nutritious food, necessitating advanced technologies for precise food quality evaluation. Nanozymes, nanomaterials with enzyme-mimicking catalytic properties, have attracted attention for their cost-effectiveness, stability and tunable features. However, limitations such as uncertain active sites and low catalytic efficiency hinder their broader application. Single-atom nanozymes (SAzymes) overcome these challenges with maximized atom utilization and well-defined structures, enabling the precise replication of metalloenzymes active centers and spatial configurations at the atomic scale. This design significantly enhances catalytic performance, positioning SAzymes as a promising frontier in food analysis.
Scope and approach
This review discusses the synthesis strategies of SAzymes and their influence on biocatalytic performance, emphasizing metal active center selection and coordination shells modulation. It highlights key advancements in SAzyme applications for evaluating food nutrients and detecting food safety. Two major challenges including low catalytic efficiency in complex food matrices and limited understanding of catalytic mechanisms are examined. Strategic pathways to overcome these challenges are proposed, promoting the integration of SAzymes into food analysis.
Key finds and conclusions
Nanozymes have garnered extensive attention due to their enzyme-like activity and robustness, but face challenges including complex compositions, low active site density and inadequate substrate specificity. In contrast, SAzymes with maximum atomic efficiency and highly tunable structure characteristics exhibit superior catalytic activities and specificity. These attributes are pivotal for advancing rapid, sensitive and on-site food analysis. This review offers fresh insights and practical guidance, shedding light on the expanding potential of SAzymes in food assay applications.
期刊介绍:
Trends in Food Science & Technology is a prestigious international journal that specializes in peer-reviewed articles covering the latest advancements in technology, food science, and human nutrition. It serves as a bridge between specialized primary journals and general trade magazines, providing readable and scientifically rigorous reviews and commentaries on current research developments and their potential applications in the food industry.
Unlike traditional journals, Trends in Food Science & Technology does not publish original research papers. Instead, it focuses on critical and comprehensive reviews to offer valuable insights for professionals in the field. By bringing together cutting-edge research and industry applications, this journal plays a vital role in disseminating knowledge and facilitating advancements in the food science and technology sector.