Sandwich-like composite membrane for advanced radiative cooling applications

Wuyi Liu , Qing Tian , Yuyi Wang , Liu Yang , Dan Lu , Zhikan Yao , Lin Zhang
{"title":"Sandwich-like composite membrane for advanced radiative cooling applications","authors":"Wuyi Liu ,&nbsp;Qing Tian ,&nbsp;Yuyi Wang ,&nbsp;Liu Yang ,&nbsp;Dan Lu ,&nbsp;Zhikan Yao ,&nbsp;Lin Zhang","doi":"10.1016/j.advmem.2025.100133","DOIUrl":null,"url":null,"abstract":"<div><div>Passive daytime radiative cooling (PDRC) offers an energy-efficient method of cooling by reflecting sunlight and emitting heat to the cold outer space through the atmospheric transparent window (ATW). For optimal performance, radiative coolers require high reflectance in the solar spectrum to minimize solar heat absorption and near-unity emissivity in the ATW to maximize heat dissipation. Here, we present a scalable composite radiative cooling membrane (cRCM) composed of a hierarchically porous polysulfone (PSF) layer, sandwiched between two flexible polydimethyl-siloxane (PDMS) layers. The PSF layer, fabricated using a simple non-solvent induced phase separation (NIPS) method, exhibits a high solar reflectance of 98.2 ​% across wavelengths of 0.3–2.5 ​μm owing to its high refractive index of 1.64. The PDMS layers, attached on both sides of the PSF membrane via roll-to-roll lamination, offer excellent mid-infrared (MIR) emissivity of 94.2 ​% across wavelengths of 2.5–20 ​μm. Under midday conditions, the membrane achieves an average temperature reduction of 5.0 ​°C below ambient air temperature, with a theoretical cooling power of 114 ​W/m<sup>2</sup>. Year-round simulations indicate significant cooling energy saving in warm and tropical regions. The new membrane represents a significant advance in PDRC technology, offering promising applications in energy-efficient cooling systems.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"5 ","pages":"Article 100133"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Membranes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772823425000077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Passive daytime radiative cooling (PDRC) offers an energy-efficient method of cooling by reflecting sunlight and emitting heat to the cold outer space through the atmospheric transparent window (ATW). For optimal performance, radiative coolers require high reflectance in the solar spectrum to minimize solar heat absorption and near-unity emissivity in the ATW to maximize heat dissipation. Here, we present a scalable composite radiative cooling membrane (cRCM) composed of a hierarchically porous polysulfone (PSF) layer, sandwiched between two flexible polydimethyl-siloxane (PDMS) layers. The PSF layer, fabricated using a simple non-solvent induced phase separation (NIPS) method, exhibits a high solar reflectance of 98.2 ​% across wavelengths of 0.3–2.5 ​μm owing to its high refractive index of 1.64. The PDMS layers, attached on both sides of the PSF membrane via roll-to-roll lamination, offer excellent mid-infrared (MIR) emissivity of 94.2 ​% across wavelengths of 2.5–20 ​μm. Under midday conditions, the membrane achieves an average temperature reduction of 5.0 ​°C below ambient air temperature, with a theoretical cooling power of 114 ​W/m2. Year-round simulations indicate significant cooling energy saving in warm and tropical regions. The new membrane represents a significant advance in PDRC technology, offering promising applications in energy-efficient cooling systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.50
自引率
0.00%
发文量
0
期刊最新文献
Incorporating polyvinylpyrrolidone modified HOF-101 into Pebax membranes for efficient toluene/N2 separation Preparation of COF-based membranes via chiral induction for efficient enantioselective resolution Robust methoxy-based covalent organic frameworks membranes enable efficient near-molecular-weight selectivity Membranes with hollow bowl-shaped window for CO2 removal from natural gas EVOH functionalized PE battery separator as the porous substrate for TFC organic solvent nanofiltration membranes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1