Claire B. Crossley , Matthew T.O. Worsey , Laura E. Diamond , David J. Saxby , Thomas Wackwitz , Matthew N. Bourne , David G. Lloyd , Claudio Pizzolato
{"title":"A calibrated EMG-informed neuromusculoskeletal model can estimate hip and knee joint contact forces in cycling better than static optimisation","authors":"Claire B. Crossley , Matthew T.O. Worsey , Laura E. Diamond , David J. Saxby , Thomas Wackwitz , Matthew N. Bourne , David G. Lloyd , Claudio Pizzolato","doi":"10.1016/j.jbiomech.2025.112586","DOIUrl":null,"url":null,"abstract":"<div><div>Cycling is a popular competitive and recreational exercise and is recommended as safe to perform following hip or knee surgery. During cycling, joint contact forces (JCF) have been recorded <em>in-vivo</em> and estimated <em>via</em> neuromusculoskeletal models, but model estimates are yet to be validated. In this study, motion data, crank force, and electromyograms for a range of cadences (40 and 60 revolutions per minute (rpm)) and power outputs (25, 35, 50, 60, 79, 75, 85, 95, 120 W) were collected from 7 healthy people cycling on a powered stationary ergometer. A (1) calibrated electromyogram-informed neuromusculoskeletal model and an (2) uncalibrated model that utilised static optimisation were used to estimate hip and knee JCF. Hip and knee JCF estimates were compared against <em>in-vivo</em> measurements of hip and knee JCF from literature. Peak hip and knee JCF were overestimated by both electromyogram-informed and static optimisation solutions, however, the magnitude and gradients of JCF as a function of cadence and power estimated by the electromyogram-informed solution more closely matched <em>in-vivo</em> measurement than those computed by static optimisation. Similarly, the profile of knee JCF as a function of crank angle estimated by the electromyogram-informed solution more closely matched <em>in-vivo</em> knee JCF than the static optimisation solution. Results indicate electromyogram-informed modelling is a valid computational approach to estimate knee and hip biomechanics during standard seated ergometer cycling.</div></div>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":"182 ","pages":"Article 112586"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021929025000971","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Cycling is a popular competitive and recreational exercise and is recommended as safe to perform following hip or knee surgery. During cycling, joint contact forces (JCF) have been recorded in-vivo and estimated via neuromusculoskeletal models, but model estimates are yet to be validated. In this study, motion data, crank force, and electromyograms for a range of cadences (40 and 60 revolutions per minute (rpm)) and power outputs (25, 35, 50, 60, 79, 75, 85, 95, 120 W) were collected from 7 healthy people cycling on a powered stationary ergometer. A (1) calibrated electromyogram-informed neuromusculoskeletal model and an (2) uncalibrated model that utilised static optimisation were used to estimate hip and knee JCF. Hip and knee JCF estimates were compared against in-vivo measurements of hip and knee JCF from literature. Peak hip and knee JCF were overestimated by both electromyogram-informed and static optimisation solutions, however, the magnitude and gradients of JCF as a function of cadence and power estimated by the electromyogram-informed solution more closely matched in-vivo measurement than those computed by static optimisation. Similarly, the profile of knee JCF as a function of crank angle estimated by the electromyogram-informed solution more closely matched in-vivo knee JCF than the static optimisation solution. Results indicate electromyogram-informed modelling is a valid computational approach to estimate knee and hip biomechanics during standard seated ergometer cycling.
期刊介绍:
The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership.
Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to:
-Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells.
-Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions.
-Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response.
-Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing.
-Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine.
-Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction.
-Molecular Biomechanics - Mechanical analyses of biomolecules.
-Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints.
-Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics.
-Sports Biomechanics - Mechanical analyses of sports performance.