Amino-β-cyclodextrin derivatives with different chain lengths as chiral selectors for separation of dansyl amino acid enantiomers by capillary electrophoresis
{"title":"Amino-β-cyclodextrin derivatives with different chain lengths as chiral selectors for separation of dansyl amino acid enantiomers by capillary electrophoresis","authors":"Yuanyuan Fu , Min Jiang , Zilin Chen","doi":"10.1016/j.chroma.2025.465781","DOIUrl":null,"url":null,"abstract":"<div><div>To date, cyclodextrins (CDs) and their derivatives are recognized as highly effective chiral selectors in electrophoresis for enantiomer separation due to their numerous advantages. In this study, three amino-β-CD derivatives, including NH<sub>2</sub>-β-CD-5 (Mono-(6-(tetraethylenepentamine)-6-deoxy)-beta-Cyclodextrin), NH<sub>2</sub>-β-CD-3 (mono-(6-(diethylenetriamine)-6-deoxy)-β-Cyclodextrin), and NH<sub>2</sub>-β-CD-1 (6-Monodeoxy-6-monoamino-beta-cyclodextrine) with varying amino substituent chain lengths were employed as chiral selectors in capillary electrophoresis (CE) to examine their chiral selectivity in the separation of five dansylated amino acid enantiomers, namely Dns-DL-Val, Dns-DL-Leu, Dns-DL-Thr, Dns-DL-Phe, and Dns-DL-Ser, as the chain length of the substituent group significantly impacts separation performance. Among the three amino-β-CD derivatives, NH<sub>2</sub>-β-CD-5 exhibited superior performance by separating four dansylated amino acid enantiomers, whereas NH<sub>2</sub>-β-CD-3 and NH<sub>2</sub>-β-CD-1 separated only two and one enantiomers, respectively. Additionally, the effects of pH values, buffer concentrations, and concentrations of the chiral selectors on the separation of dansylated amino acid enantiomers were also investigated. Furthermore, the stability and reproducibility of the three amino-β-CD derivatives were evaluated, with the relative standard deviations (RSDs) of resolution all below 8.2 %.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":"1746 ","pages":"Article 465781"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography A","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021967325001293","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
To date, cyclodextrins (CDs) and their derivatives are recognized as highly effective chiral selectors in electrophoresis for enantiomer separation due to their numerous advantages. In this study, three amino-β-CD derivatives, including NH2-β-CD-5 (Mono-(6-(tetraethylenepentamine)-6-deoxy)-beta-Cyclodextrin), NH2-β-CD-3 (mono-(6-(diethylenetriamine)-6-deoxy)-β-Cyclodextrin), and NH2-β-CD-1 (6-Monodeoxy-6-monoamino-beta-cyclodextrine) with varying amino substituent chain lengths were employed as chiral selectors in capillary electrophoresis (CE) to examine their chiral selectivity in the separation of five dansylated amino acid enantiomers, namely Dns-DL-Val, Dns-DL-Leu, Dns-DL-Thr, Dns-DL-Phe, and Dns-DL-Ser, as the chain length of the substituent group significantly impacts separation performance. Among the three amino-β-CD derivatives, NH2-β-CD-5 exhibited superior performance by separating four dansylated amino acid enantiomers, whereas NH2-β-CD-3 and NH2-β-CD-1 separated only two and one enantiomers, respectively. Additionally, the effects of pH values, buffer concentrations, and concentrations of the chiral selectors on the separation of dansylated amino acid enantiomers were also investigated. Furthermore, the stability and reproducibility of the three amino-β-CD derivatives were evaluated, with the relative standard deviations (RSDs) of resolution all below 8.2 %.
期刊介绍:
The Journal of Chromatography A provides a forum for the publication of original research and critical reviews on all aspects of fundamental and applied separation science. The scope of the journal includes chromatography and related techniques, electromigration techniques (e.g. electrophoresis, electrochromatography), hyphenated and other multi-dimensional techniques, sample preparation, and detection methods such as mass spectrometry. Contributions consist mainly of research papers dealing with the theory of separation methods, instrumental developments and analytical and preparative applications of general interest.