{"title":"A low-light image enhancement framework based on hybrid multiscale decomposition and adaptive brightness adjustment model","authors":"Yizheng Lang, Yunsheng Qian","doi":"10.1016/j.optlastec.2025.112621","DOIUrl":null,"url":null,"abstract":"<div><div>Under inadequate lighting conditions, low-light images often suffer from low contrast and poor visibility. However, many existing methods struggle to find a balance between detail enhancement, brightness adjustment, and noise suppression. To address these challenges, this paper proposes a hybrid multiscale decomposition and adaptive brightness adjustment model for low-light image enhancement. By combining local and global contrast enhancement techniques, an adaptive brightness adjustment algorithm is introduced to improve both the brightness and texture details. Furthermore, a hybrid multiscale decomposition model based on guided filtering and side window guided filters is designed to handle the intricate nature of image detail information, which divides the original image into three distinct layers: a base layer representing the background, a large-scale detail layer capturing prominent edge structures, and a small-scale detail layer preserving subtle texture details. To preserve key image details and enhance salient targets, fusion methods based on “exposure” functions and normalized arctan functions are employed. These methods ensure that weak details are preserved while suppressing noise artifacts. Qualitative and quantitative experimental results conducted on public datasets demonstrate that the proposed method surpasses state-of-the-art approaches in terms of detail enhancement, brightness adjustment, and noise suppression.</div></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"185 ","pages":"Article 112621"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399225002099","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Under inadequate lighting conditions, low-light images often suffer from low contrast and poor visibility. However, many existing methods struggle to find a balance between detail enhancement, brightness adjustment, and noise suppression. To address these challenges, this paper proposes a hybrid multiscale decomposition and adaptive brightness adjustment model for low-light image enhancement. By combining local and global contrast enhancement techniques, an adaptive brightness adjustment algorithm is introduced to improve both the brightness and texture details. Furthermore, a hybrid multiscale decomposition model based on guided filtering and side window guided filters is designed to handle the intricate nature of image detail information, which divides the original image into three distinct layers: a base layer representing the background, a large-scale detail layer capturing prominent edge structures, and a small-scale detail layer preserving subtle texture details. To preserve key image details and enhance salient targets, fusion methods based on “exposure” functions and normalized arctan functions are employed. These methods ensure that weak details are preserved while suppressing noise artifacts. Qualitative and quantitative experimental results conducted on public datasets demonstrate that the proposed method surpasses state-of-the-art approaches in terms of detail enhancement, brightness adjustment, and noise suppression.
期刊介绍:
Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication.
The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas:
•development in all types of lasers
•developments in optoelectronic devices and photonics
•developments in new photonics and optical concepts
•developments in conventional optics, optical instruments and components
•techniques of optical metrology, including interferometry and optical fibre sensors
•LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow
•applications of lasers to materials processing, optical NDT display (including holography) and optical communication
•research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume)
•developments in optical computing and optical information processing
•developments in new optical materials
•developments in new optical characterization methods and techniques
•developments in quantum optics
•developments in light assisted micro and nanofabrication methods and techniques
•developments in nanophotonics and biophotonics
•developments in imaging processing and systems