Classification and predictive leaching risk assessment of construction and demolition waste using multivariate statistical and machine learning analyses

IF 7.1 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Waste management Pub Date : 2025-02-19 DOI:10.1016/j.wasman.2025.02.033
Andrea Bisciotti , Valentina Brombin , Yu Song , Gianluca Bianchini , Giuseppe Cruciani
{"title":"Classification and predictive leaching risk assessment of construction and demolition waste using multivariate statistical and machine learning analyses","authors":"Andrea Bisciotti ,&nbsp;Valentina Brombin ,&nbsp;Yu Song ,&nbsp;Gianluca Bianchini ,&nbsp;Giuseppe Cruciani","doi":"10.1016/j.wasman.2025.02.033","DOIUrl":null,"url":null,"abstract":"<div><div>Managing construction and demolition waste (CDW) poses serious concerns regarding landfilling and recycling because of the potential release of hazardous elements after leaching. Ceramic materials such as bricks, tiles, and porcelain account for more than 70% of CDW. Fourteen samples of different CDW products from Ferrara (Northeast Italy) were subjected to geochemical analyses, including leaching tests, in accordance with UNI EN 12457–2. The interaction between ceramics and concrete was examined, highlighting the influence of mixed environments on the leaching behavior. Results were compared with an extensive database of more than 150 samples collected from the literature on different CDW types worldwide. Multivariate statistical analysis and machine learning were used to classify the CDW compositions based on the bulk chemical data. Various metrics—contaminant factors (C<sub>f</sub> and C<sub>d</sub>) and hazardous quotients (HQ and HQ<sub>m</sub>)—were introduced to quantify the key environmental hazards of leachates. The results of this study underscore the potential of the proposed approaches in automating CDW classification and predicting C<sub>f</sub> and HQ using only the starting bulk chemical composition. The findings enhance CDW management practices and support sustainability efforts in the construction industry.</div></div>","PeriodicalId":23969,"journal":{"name":"Waste management","volume":"196 ","pages":"Pages 60-70"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956053X25000881","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Managing construction and demolition waste (CDW) poses serious concerns regarding landfilling and recycling because of the potential release of hazardous elements after leaching. Ceramic materials such as bricks, tiles, and porcelain account for more than 70% of CDW. Fourteen samples of different CDW products from Ferrara (Northeast Italy) were subjected to geochemical analyses, including leaching tests, in accordance with UNI EN 12457–2. The interaction between ceramics and concrete was examined, highlighting the influence of mixed environments on the leaching behavior. Results were compared with an extensive database of more than 150 samples collected from the literature on different CDW types worldwide. Multivariate statistical analysis and machine learning were used to classify the CDW compositions based on the bulk chemical data. Various metrics—contaminant factors (Cf and Cd) and hazardous quotients (HQ and HQm)—were introduced to quantify the key environmental hazards of leachates. The results of this study underscore the potential of the proposed approaches in automating CDW classification and predicting Cf and HQ using only the starting bulk chemical composition. The findings enhance CDW management practices and support sustainability efforts in the construction industry.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Waste management
Waste management 环境科学-工程:环境
CiteScore
15.60
自引率
6.20%
发文量
492
审稿时长
39 days
期刊介绍: Waste Management is devoted to the presentation and discussion of information on solid wastes,it covers the entire lifecycle of solid. wastes. Scope: Addresses solid wastes in both industrialized and economically developing countries Covers various types of solid wastes, including: Municipal (e.g., residential, institutional, commercial, light industrial) Agricultural Special (e.g., C and D, healthcare, household hazardous wastes, sewage sludge)
期刊最新文献
Wasting nature's harvest: Understanding the drivers of household fruit and vegetable waste. Modelling anaerobic digestion of agricultural waste: From lab to full scale Sustainable biomass processing: Optimizing energy efficiency through ash waste heat recovery for fuels dewatering Enhancing operational efficiency in a voluntary recycling project through data-driven waste collection optimization Machine learning-assisted prediction of gas production during co-pyrolysis of biomass and waste plastics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1