Anh Ho , Anh M.T. Bui , Phuong T. Nguyen , Amleto Di Salle , Bach Le
{"title":"EnseSmells : Deep ensemble and programming language models for automated code smells detection","authors":"Anh Ho , Anh M.T. Bui , Phuong T. Nguyen , Amleto Di Salle , Bach Le","doi":"10.1016/j.jss.2025.112375","DOIUrl":null,"url":null,"abstract":"<div><div>A smell in software source code denotes an indication of suboptimal design and implementation decisions, potentially hindering the code understanding and, in turn, raising the likelihood of being prone to changes and faults. Identifying these code issues at an early stage in the software development process can mitigate these problems and enhance the overall quality of the software. Current research primarily focuses on the utilization of deep learning-based models to investigate the contextual information concealed within source code instructions to detect code smells, with limited attention given to the importance of structural and design-related features. This paper proposes a novel approach to code smell detection, constructing a deep learning architecture that places importance on the fusion of structural features and statistical semantics derived from pre-trained models for programming languages. We further provide a thorough analysis of how different source code embedding models affect the detection performance with respect to different code smell types. Using four widely-used code smells from well-designed datasets, our empirical study shows that incorporating design-related features significantly improves detection accuracy, outperforming state-of-the-art methods on the MLCQ dataset with improvements ranging from 5.98% to 28.26%, depending on the type of code smell.</div></div>","PeriodicalId":51099,"journal":{"name":"Journal of Systems and Software","volume":"224 ","pages":"Article 112375"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems and Software","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0164121225000433","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
A smell in software source code denotes an indication of suboptimal design and implementation decisions, potentially hindering the code understanding and, in turn, raising the likelihood of being prone to changes and faults. Identifying these code issues at an early stage in the software development process can mitigate these problems and enhance the overall quality of the software. Current research primarily focuses on the utilization of deep learning-based models to investigate the contextual information concealed within source code instructions to detect code smells, with limited attention given to the importance of structural and design-related features. This paper proposes a novel approach to code smell detection, constructing a deep learning architecture that places importance on the fusion of structural features and statistical semantics derived from pre-trained models for programming languages. We further provide a thorough analysis of how different source code embedding models affect the detection performance with respect to different code smell types. Using four widely-used code smells from well-designed datasets, our empirical study shows that incorporating design-related features significantly improves detection accuracy, outperforming state-of-the-art methods on the MLCQ dataset with improvements ranging from 5.98% to 28.26%, depending on the type of code smell.
期刊介绍:
The Journal of Systems and Software publishes papers covering all aspects of software engineering and related hardware-software-systems issues. All articles should include a validation of the idea presented, e.g. through case studies, experiments, or systematic comparisons with other approaches already in practice. Topics of interest include, but are not limited to:
•Methods and tools for, and empirical studies on, software requirements, design, architecture, verification and validation, maintenance and evolution
•Agile, model-driven, service-oriented, open source and global software development
•Approaches for mobile, multiprocessing, real-time, distributed, cloud-based, dependable and virtualized systems
•Human factors and management concerns of software development
•Data management and big data issues of software systems
•Metrics and evaluation, data mining of software development resources
•Business and economic aspects of software development processes
The journal welcomes state-of-the-art surveys and reports of practical experience for all of these topics.