{"title":"Vision Transformers for Anomaly Classification and Localization in Optical Networks Using SOP Spectrograms","authors":"Khouloud Abdelli;Matteo Lonardi;Fabien Boitier;Diego Correa;Jurgen Gripp;Samuel Olsson;Patricia Layec","doi":"10.1109/JLT.2024.3519755","DOIUrl":null,"url":null,"abstract":"Monitoring the state of polarization (SOP) in optical communication networks is vital for maintaining network reliability and performance. SOP data, influenced by environmental factors, presents significant challenges for conventional methods due to its multidimensional nature and susceptibility to noise. Machine learning (ML) algorithms provide a promising solution by effectively learning complex patterns in SOP data, thereby enhancing anomaly detection capabilities. In this paper, we introduce an enhanced vision transformer-based approach for anomaly classification and localization in SOP data. Our method leverages spectrograms derived from continuous SOP measurements and has been validated using experimental data from a 2600 km bidirectional link. The proposed approach achieves an accuracy of 99% and a timestamping precision with a root mean square error (RMSE) of 7 ms. Comparative evaluations against several ML baselines underscore the superiority of our method, particularly in accurately localizing SOP transients within spectrograms and handling overlapping events, though these are treated as single combined events. These results reaffirm the efficacy of our approach in improving anomaly classification and localization capabilities in optical networks.","PeriodicalId":16144,"journal":{"name":"Journal of Lightwave Technology","volume":"43 4","pages":"1902-1914"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Lightwave Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10806557/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Monitoring the state of polarization (SOP) in optical communication networks is vital for maintaining network reliability and performance. SOP data, influenced by environmental factors, presents significant challenges for conventional methods due to its multidimensional nature and susceptibility to noise. Machine learning (ML) algorithms provide a promising solution by effectively learning complex patterns in SOP data, thereby enhancing anomaly detection capabilities. In this paper, we introduce an enhanced vision transformer-based approach for anomaly classification and localization in SOP data. Our method leverages spectrograms derived from continuous SOP measurements and has been validated using experimental data from a 2600 km bidirectional link. The proposed approach achieves an accuracy of 99% and a timestamping precision with a root mean square error (RMSE) of 7 ms. Comparative evaluations against several ML baselines underscore the superiority of our method, particularly in accurately localizing SOP transients within spectrograms and handling overlapping events, though these are treated as single combined events. These results reaffirm the efficacy of our approach in improving anomaly classification and localization capabilities in optical networks.
期刊介绍:
The Journal of Lightwave Technology is comprised of original contributions, both regular papers and letters, covering work in all aspects of optical guided-wave science, technology, and engineering. Manuscripts are solicited which report original theoretical and/or experimental results which advance the technological base of guided-wave technology. Tutorial and review papers are by invitation only. Topics of interest include the following: fiber and cable technologies, active and passive guided-wave componentry (light sources, detectors, repeaters, switches, fiber sensors, etc.); integrated optics and optoelectronics; and systems, subsystems, new applications and unique field trials. System oriented manuscripts should be concerned with systems which perform a function not previously available, out-perform previously established systems, or represent enhancements in the state of the art in general.